
agentzh's	Nginx	Tutorials	(version	2020.03.19)
Table	of	Contents

Foreword
Writing	Plan	for	the	Tutorials
Nginx	Variables	(01)
Nginx	Variables	(02)
Nginx	Variables	(03)
Nginx	Variables	(04)
Nginx	Variables	(05)
Nginx	Variables	(06)
Nginx	Variables	(07)
Nginx	Variables	(08)
Nginx	Directive	Execution	Order	(01)
Nginx	Directive	Execution	Order	(02)
Nginx	Directive	Execution	Order	(03)
Nginx	Directive	Execution	Order	(04)
Nginx	Directive	Execution	Order	(05)
Nginx	Directive	Execution	Order	(06)
Nginx	Directive	Execution	Order	(07)
Nginx	Directive	Execution	Order	(08)
Nginx	Directive	Execution	Order	(09)
Nginx	Directive	Execution	Order	(10)

Foreword	
I've	been	doing	a	lot	of	work	in	the	Nginx	world	over	the	last	few	years	and	I've	also	been	thinking	about	writing	a	series	of	tutorial-
like	articles	to	explain	to	more	people	what	I've	done	and	what	I've	learned	in	this	area.	Now	I	have	finally	decided	to	post	serial
articles	to	the	Sina	Blog	http://blog.sina.com.cn/openresty	in	Chinese.	Every	article	will	roughly	cover	a	single	topic	and	will	be	in	a
rather	casual	style.	But	at	some	point	in	the	future	I	may	restructure	the	articles	and	their	style	in	order	to	turn	them	into	a	"real"	book.

The	articles	are	divided	into	series.	For	example,	the	first	series	is	"Nginx	Variables".	Each	series	can	be	thought	of	as	mapping	to	a
chapter	in	the	Nginx	book	that	I	may	publish	in	the	future.

The	articles	are	intended	for	Nginx	users	of	all	experience	levels,	including	users	with	extensive	Apache	and	Lighttpd	experience	who
may	have	never	used	Nginx	before.

The	examples	in	the	articles	are	at	least	compatible	with	Nginx	0.8.54.	Do	not	try	the	examples	with	older	versions	of	Nginx.	The
latest	stable	version	of	Nginx	as	of	this	writing	is	1.7.9.

All	of	the	Nginx	modules	referenced	in	the	articles	are	production-ready.	I	will	not	be	covering	any	Nginx	core	modules	that	are	either
experimental	or	buggy.	Additionally,	I	will	be	making	extensive	use	of	3rd-party	Nginx	modules	in	the	examples.	If	it's	inconvenient
for	you	to	download	and	install	the	individual	modules	one	at	a	time	then	I	highly	recommend	that	you	download	and	install	the
ngx_openresty	software	bundle	that	I	maintain.

http://openresty.org/

All	of	the	modules	referenced	in	the	articles,	including	the	core	Nginx	modules	that	are	new	(but	stable),	are	included	in	the	OpenResty
bundle.

A	principle	that	I	will	be	trying	to	adhere	to	is	to	use	small	concise	examples	to	explain	and	validate	the	concepts	and	behaviors	being
described.	My	hope	is	that	it	will	help	the	reader	to	develop	the	good	habit	of	not	accepting	others'	viewpoints	or	statements	at	face
value	without	testing	them	first.	This	approach	may	have	something	to	do	with	my	QA	background.	In	fact,	I	keep	tweaking	and
correcting	the	articles	based	on	the	results	of	running	the	examples	while	writing.

The	examples	in	the	articles	fall	into	one	of	two	categories,	good	and	problematic.	The	purpose	of	the	problematic	examples	is	to
highlight	potential	pitfalls	and	other	areas	where	Nginx	or	its	modules	behave	in	ways	that	readers	may	not	expect.	Problematic
examples	are	easy	to	identify	because	each	line	of	text	in	the	example	will	be	prefixed	with	a	question	mark,	i.e.,	"?".	Here	is	an
example:

?	server	{

?					listen	8080;

?

?					location	/bad	{

?									echo	$foo;

?					}

?	}

Do	not	reproduce	these	articles	without	explicit	permissions	from	us.	Copyright	reserved.

I	encourage	readers	to	send	feedback	(agentzh@gmail.com),	especially	constructive	criticism.

The	source	for	all	the	articles	is	on	GitHub:

http://github.com/agentzh/nginx-tutorials/

The	source	files	are	under	the	en/	directory.	I	am	using	a	little	markup	language	that	is	a	mixture	of	Wiki	and	POD	to	write	these
articles.	They	are	the	.tut	files.	You	are	welcome	to	create	forks	and/or	provide	patches.

The	e-books	files	that	are	suitable	for	cellphones,	Kindle,	iPad/iPhone,	Sony	Readers,	and	other	devices	can	be	downloaded	from	here:

http://openresty.org/#eBooks

Special	thanks	go	to	Kai	Wu	(kai10k)	who	kindly	translates	these	articles	to	English.

agentzh	at	home	in	the	Fuzhou	city

October	30,	2011

http://blog.sina.com.cn/openresty
http://openresty.org/
http://github.com/agentzh/nginx-tutorials/
http://openresty.org/#eBooks

Writing	Plan	for	the	Tutorials	
Here	lists	the	tutorial	series	that	have	already	been	published	or	to	be	published.

Getting	Started	with	Nginx
How	Nginx	Matches	URIs
Nginx	Variables
Nginx	Directive	Execution	Order
Nginx's	if	is	Evil
Nginx	Subrequests
Nginx	Static	File	Services
Nginx	Log	Services
Application	Gateways	based	on	Nginx
Reverse-Proxies	based	on	Nginx
Nginx	and	Memcached
Nginx	and	Redis
Nginx	and	MySQL
Nginx	and	PostgreSQL
Application	caching	Based	on	Nginx
Security	and	Access	Control	in	Nginx
Web	Services	Based	on	Nginx
AJAX	Applications	Driven	by	Nginx
Performance	Testing	for	Nginx	and	its	Applications
Strength	of	the	Nginx	Community

The	series	names	can	roughly	correspond	to	the	chapter	names	in	my	final	Nginx	book,	but	they	are	unlikely	to	stay	exactly	the	same.
The	actual	series	names	may	change	and	the	relative	order	of	the	series	may	change	as	well.

The	list	above	will	be	constantly	updated	to	always	reflect	the	latest	plan.

Variables	are	value	containers

Nginx	Variables	(01)	
Variables	as	Value	Containers	

Nginx's	configuration	files	use	a	micro	programming	language.	Many	real-world	Nginx	configuration	files	are	essentially	small
programs.	This	language's	design	is	heavily	influenced	by	Perl	and	Bourne	Shell	as	far	as	I	can	see,	despite	the	fact	that	it	might	not	be
Turing-Complete	and	it	is	declarative	in	many	places.	This	is	a	distinguishing	feature	of	Nginx,	as	compared	to	other	web	servers	like
Apache	or	Lighttpd.	Being	a	programming	language,	"variables"	are	thus	a	natural	part	of	it	(exceptions	do	exist,	of	course,	as	in	pure
functional	languages	like	Haskell).

Variables	are	just	containers	holding	various	values	in	imperative	languages	like
Perl,	Bourne	Shell,	and	C/C++.	And	"values"	can	be	numbers	like	3.14,	strings
like	hello	world,	or	even	complicated	things	like	references	to	arrays	or
hash	tables	in	those	languages.	For	the	Nginx	configuration	language,	however,
variables	can	hold	only	one	type	of	values,	that	is,	strings	(there	is	an	interesting
exception:	the	3rd-party	module	ngx_array_var	extends	Nginx	variables	to	hold
arrays,	but	it	is	implemented	by	encoding	a	C	pointer	as	a	binary	string	value
behind	the	scene).

http://wiki.nginx.org/HttpArrayVarModule

Variable	Syntax	and	Interpolation	

Let's	say	our	nginx.conf	configuration	file	has	the	following	line:

set	$a	"hello	world";

We	assign	a	value	to	the	variable	$a	via	the	set	configuration	directive	coming	from	the	standard	ngx_rewrite	module.	In	particular,
we	assign	the	string	value	hello	world	to	$a.

We	can	see	that	the	Nginx	variable	name	takes	a	dollar	sign	($)	in	front	of	it.	This	is	required	by	the	language	syntax:	whenever	we
want	to	reference	an	Nginx	variable	in	the	configuration	file,	we	must	add	a	$	prefix.	This	looks	very	familiar	to	those	Perl	and	PHP
programmers.

Such	variable	prefix	modifiers	may	discomfort	some	Java	and	C#	programmers,	this	notation	does	have	an	obvious	advantage	though,
that	is,	variables	can	be	embedded	directly	into	a	string	literal:

set	$a	hello;

set	$b	"$a,	$a";

Here	we	use	the	value	of	the	existing	Nginx	variable	$a	to	construct	the	value	for	the	variable	$b.	So	after	these	two	directives
complete	execution,	the	value	of	$a	is	hello,	and	$b	is	hello,	hello.	This	technique	is	called	"variable	interpolation"	in	the
Perl	world,	which	makes	ad-hoc	string	concatenation	operators	no	longer	that	necessary.	Let's	use	the	same	term	for	the	Nginx	world
from	now	on.

Let's	see	another	complete	example:

server	{

				listen	8080;

				location	/test	{

								set	$foo	hello;

								echo	"foo:	$foo";

				}

}

This	example	omits	the	http	directive	and	events	configuration	blocks	in	the	outer-most	scope	for	brevity.	To	request	this	/test
interface	via	curl,	an	HTTP	client	utility,	on	the	command	line,	we	get

$	curl	'http://localhost:8080/test'

foo:	hello

Here	we	use	the	echo	directive	of	the	3rd	party	module	ngx_echo	to	print	out	the	value	of	the	$foo	variable	as	the	HTTP	response.

Apparently	the	arguments	of	the	echo	directive	does	support	"variable	interpolation",	but	we	can	not	take	it	for	granted	for	other
directives.	Because	not	all	the	configuration	directives	support	"variable	interpolation"	and	it	is	in	fact	up	to	the	implementation	of	the
directive	in	that	module.	Always	look	up	the	documentation	to	be	sure.

Escaping	"$"	

We've	already	learned	that	the	$	character	is	special	and	it	serves	as	the	variable	name	prefix,	but	now	consider	that	we	want	to	output
a	literal	$	character	via	the	echo	directive.	The	following	naive	example	does	not	work	at	all:

?	:nginx

?	location	/t	{

?					echo	"$";

?	}

We	will	get	the	following	error	message	while	loading	this	configuration:

[emerg]	invalid	variable	name	in	...

Obviously	Nginx	tries	to	parse	$"	as	a	variable	name.	Is	there	a	way	to	escape	$	in	the	string	literal?	The	answer	is	"no"	(it	is	still	the
case	in	the	latest	Nginx	stable	release	1.2.7)	and	I	have	been	hoping	that	we	could	write	something	like	$$	to	obtain	a	literal	$.

http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpRewriteModule
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpEchoModule
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpEchoModule#echo

Luckily,	workarounds	do	exist	and	here	is	one	proposed	by	Maxim	Dounin:	first	we	assign	to	a	variable	a	literal	string	containing	a
dollar	sign	character	via	a	configuration	directive	that	does	not	support	"variable	interpolation"	(remember	that	not	all	the	directives
support	"variable	interpolation"?),	and	then	reference	this	variable	later	whenever	we	need	a	dollar	sign.	Here	is	such	an	example	to
demonstrate	the	idea:

geo	$dollar	{

				default	"$";

}

server	{

				listen	8080;

				location	/test	{

								echo	"This	is	a	dollar	sign:	$dollar";

				}

}

Let's	test	it	out:

$	curl	'http://localhost:8080/test'

This	is	a	dollar	sign:	$

Here	we	make	use	of	the	geo	directive	of	the	standard	module	ngx_geo	to	initialize	the	$dollar	variable	with	the	string	"$",
thereafter	variable	$dollar	can	be	used	in	places	that	require	a	dollar	sign.	This	works	because	the	geo	directive	does	not	support
"variable	interpolation"	at	all.	However,	the	ngx_geo	module	is	originally	designed	to	set	a	Nginx	variable	to	different	values
according	to	the	remote	client	address,	and	in	this	example,	we	just	abuse	it	to	initialize	the	$dollar	variable	with	the	string	"$"
unconditionally.

Disambiguating	Variable	Names	

There	is	a	special	case	for	"variable	interpolation",	that	is,	when	the	variable	name	is	followed	directly	by	characters	allowed	in
variable	names	(like	letters,	digits,	and	underscores).	In	such	cases,	we	can	use	a	special	notation	to	disambiguate	the	variable	name
from	the	subsequent	literal	characters,	for	instance,

server	{

				listen	8080;

				location	/test	{

								set	$first	"hello	";

								echo	"${first}world";

				}

}

Here	the	variable	$first	is	concatenated	with	the	literal	string	world.	If	it	were	written	directly	as	"$firstworld",	Nginx's
"variable	interpolation"	engine	(also	known	as	the	"script	engine")	would	try	to	access	the	variable	$firstworld	instead	of
$first.	To	resolve	the	ambiguity	here,	curly	braces	must	be	used	around	the	variable	name	(excluding	the	$	prefix),	as	in
${first}.	Let's	test	this	sample:

$	curl	'http://localhost:8080/test'

hello	world

http://wiki.nginx.org/HttpGeoModule#geo
http://wiki.nginx.org/HttpGeoModule
http://wiki.nginx.org/HttpGeoModule#geo
http://wiki.nginx.org/HttpGeoModule

Variable	Declaration	and	Creation	

In	languages	like	C/C++,	variables	must	be	declared	(or	created)	before	they	can	be	used	so	that	the	compiler	can	allocate	storage	and
perform	type	checking	at	compile-time.	Similarly,	Nginx	creates	all	the	Nginx	variables	while	loading	the	configuration	file	(or	in
other	words,	at	"configuration	time"),	therefore	Nginx	variables	are	also	required	to	be	declared	somehow.

Fortunately	the	set	directive	and	the	geo	directive	mentioned	above	do	have	the	side	effect	of	declaring	or	creating	Nginx	variables	that
they	will	assign	values	to	later	at	"request	time".	If	we	do	not	declare	a	variable	this	way	and	use	it	directly	in,	say,	the	echo	directive,
we	will	get	an	error.	For	example,

?	server	{

?					listen	8080;

?

?					location	/bad	{

?									echo	$foo;

?					}

?	}

Here	we	do	not	declare	the	$foo	variable	and	access	its	value	directly	in	echo.	Nginx	will	just	refuse	loading	this	configuration:

[emerg]	unknown	"foo"	variable

Yes,	we	cannot	even	start	the	server!

Nginx	variable	creation	and	assignment	happen	at	completely	different	phases	along	the	time-line.	Variable	creation	only	occurs	when
Nginx	loads	its	configuration.	On	the	other	hand,	variable	assignment	occurs	when	requests	are	actually	being	served.	This	also	means
that	we	can	never	create	new	Nginx	variables	at	"request	time".

http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpGeoModule#geo
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpEchoModule#echo

Variable	Scope	

Once	an	Nginx	variable	is	created,	it	is	visible	to	the	entire	configuration,	even	across	different	virtual	server	configuration	blocks,
regardless	of	the	places	it	is	declared	at.	Here	is	an	example:

server	{

				listen	8080;

				location	/foo	{

								echo	"foo	=	[$foo]";

				}

				location	/bar	{

								set	$foo	32;

								echo	"foo	=	[$foo]";

				}

}

Here	the	variable	$foo	is	created	by	the	set	directive	within	location	/bar,	and	this	variable	is	visible	to	the	entire	configuration,
therefore	we	can	reference	it	in	location	/foo	without	worries.	Below	is	the	result	of	testing	these	two	interfaces	via	the	curl
tool.

$	curl	'http://localhost:8080/foo'

foo	=	[]

$	curl	'http://localhost:8080/bar'

foo	=	[32]

$	curl	'http://localhost:8080/foo'

foo	=	[]

We	can	see	that	the	assignment	operation	is	only	performed	in	requests	that	access	location	/bar,	since	the	corresponding	set
directive	is	only	used	in	that	location.	When	requesting	the	/foo	interface,	we	always	get	an	empty	value	for	the	$foo	variable
because	that	is	what	we	get	when	accessing	an	uninitialized	variable.

Another	important	characteristic	that	we	can	observe	from	this	example	is	that	even	though	the	scope	of	Nginx	variables	is	the	entire
configuration,	each	request	does	have	its	own	version	of	all	those	variables'	containers.	Requests	do	not	interfere	with	each	other	even
if	they	are	referencing	a	variable	with	the	same	name.	This	is	very	much	like	local	variables	in	C/C++	function	bodies.	Each	invocation
of	the	C/C++	function	does	use	its	own	version	of	those	local	variables	(on	the	stack).

For	instance,	in	this	sample,	we	request	/bar	and	the	variable	$foo	gets	the	value	32,	which	does	not	affect	the	value	of	$foo	in
subsequent	requests	to	/foo	(it	is	still	uninitialized!),	because	they	correspond	to	different	value	containers.

One	common	mistake	for	Nginx	newcomers	is	to	regard	Nginx	variables	as	something	shared	among	all	the	requests.	Even	though	the
scope	of	Nginx	variable	names	go	across	configuration	blocks	at	"configuration	time",	its	value	container's	scope	never	goes	beyond
request	boundaries	at	"request	time".	Essentially	here	we	do	have	two	different	kinds	of	scope	here.

http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpRewriteModule#set

Nginx	Variables	(02)	
Variable	Lifetime	&	Internal	Redirection	

We	already	know	that	Nginx	variables	are	bound	to	each	request	handled	by	Nginx,	for	this	reason	they	have	exactly	the	same	lifetime
as	the	corresponding	request.

There	is	another	common	misunderstanding	here	though:	some	newcomers	tend	to	assume	that	the	lifetime	of	Nginx	variables	is	bound
to	the	location	configuration	block.	Let's	consider	the	following	counterexample:

server	{

				listen	8080;

				location	/foo	{

								set	$a	hello;

								echo_exec	/bar;

				}

				location	/bar	{

								echo	"a	=	[$a]";

				}

}

Here	in	location	/foo	we	use	the	echo_exec	directive	(provided	by	the	3rd-party	module	ngx_echo)	to	initiate	an	"internal
redirection"	to	location	/bar.	The	"internal	redirection"	is	an	operation	that	makes	Nginx	jump	from	one	location	to	another
while	processing	a	request.	This	"jumping"	happens	completely	within	the	server	itself.	This	is	different	from	those	"external
redirections"	based	on	the	HTTP	301	and	302	responses	because	the	latter	is	collaborated	externally,	by	the	HTTP	clients.	Also,	in
case	of	"external	redirections",	the	end	user	could	usually	observe	the	change	of	the	URL	in	her	web	browser's	address	bar	while	this	is
not	the	case	for	internal	ones.	"Internal	redirections"	are	very	similar	to	the	exec	command	in	Bourne	Shell;	it	is	a	"one	way	trip"	and
never	returns.	Another	similar	example	is	the	goto	statement	in	the	C	language.

Being	an	"internal	redirection",	the	request	after	the	redirection	remains	the	original	one.	It	is	just	the	current	location	that	is
changed,	so	we	are	still	using	the	original	copy	of	the	Nginx	variable	containers.	Back	to	our	example,	the	whole	process	looks	like
this:	Nginx	first	assigns	to	the	$a	variable	the	string	value	hello	via	the	set	directive	in	location	/foo,	and	then	it	issues	an
internal	redirection	via	the	echo_exec	directive,	thus	leaving	location	/foo	and	entering	location	/bar,	and	finally	it
outputs	the	value	of	$a.	Because	the	value	container	of	$a	remains	untouched,	we	can	expect	the	response	output	to	be	hello.	The
test	result	confirms	this:

$	curl	localhost:8080/foo

a	=	[hello]

But	when	accessing	/bar	directly	from	the	client	side,	we	will	get	an	empty	value	for	the	$a	variable,	since	this	variable	relies	on
location	/foo	to	get	initialized.

It	can	be	observed	that	during	a	request's	lifetime,	the	copy	of	Nginx	variable	containers	does	not	change	at	all	even	when	Nginx	goes
across	different	location	configuration	blocks.	Here	we	also	encounter	the	concept	of	"internal	redirections"	for	the	first	time	and
it's	worth	mentioning	that	the	rewrite	directive	of	the	ngx_rewrite	module	can	also	be	used	to	initiate	"internal	redirections".	For
instance,	we	can	rewrite	the	example	above	with	the	rewrite	directive	as	follows:

server	{

				listen	8080;

				location	/foo	{

								set	$a	hello;

								rewrite	^	/bar;

				}

				location	/bar	{

								echo	"a	=	[$a]";

				}

}

http://wiki.nginx.org/HttpEchoModule#echo_exec
http://wiki.nginx.org/HttpEchoModule
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpEchoModule#echo_exec
http://wiki.nginx.org/HttpRewriteModule#rewrite
http://wiki.nginx.org/HttpRewriteModule
http://wiki.nginx.org/HttpRewriteModule#rewrite

It's	functionally	equivalent	to	echo_exec.	We	will	discuss	the	rewrite	directive	in	more	depth	in	later	chapters,	like	initiating	"external
redirections"	like	301	and	302.

To	conclude,	the	lifetime	of	Nginx	variable	containers	is	indeed	bound	to	the	request	being	processed,	and	is	irrelevant	to	location.

http://wiki.nginx.org/HttpEchoModule#echo_exec
http://wiki.nginx.org/HttpRewriteModule#rewrite

Nginx	Built-in	Variables	

The	Nginx	variables	we	have	seen	so	far	are	all	(implicitly)	created	by	directives	like	set.	We	usually	call	such	variables	"user-defined
varaibles",	or	simply	"user	variables".	There	is	also	another	kind	of	Nginx	variables	that	are	pre-defined	by	either	the	Nginx	core	or
Nginx	modules.	Let's	call	this	kind	of	variables	"built-in	variables".

$uri	&	$request_uri	

One	common	use	of	Nginx	built-in	variables	is	to	retrieve	various	types	of	information	about	the	current	request	or	response.	For
instance,	the	built-in	variable	$uri	provided	by	ngx_http_core	is	used	to	fetch	the	(decoded)	URI	of	the	current	request,	excluding	any
query	string	arguments.	Another	example	is	the	$request_uri	variable	provided	by	the	same	module,	which	is	used	to	fetch	the	raw,
non-decoded	form	of	the	URI,	including	any	query	string.	Let's	look	at	the	following	example.

location	/test	{

				echo	"uri	=	$uri";

				echo	"request_uri	=	$request_uri";

}

We	omit	the	server	configuration	block	here	for	brevity.	Just	as	all	those	samples	above,	we	still	listen	to	the	8080	local	port.	In
this	example,	we	output	both	the	$uri	and	$request_uri	into	the	response	body.	Below	is	the	result	of	testing	this	/test	interface	with
different	requests:

$	curl	'http://localhost:8080/test'

uri	=	/test

request_uri	=	/test

$	curl	'http://localhost:8080/test?a=3&b=4'

uri	=	/test

request_uri	=	/test?a=3&b=4

$	curl	'http://localhost:8080/test/hello%20world?a=3&b=4'

uri	=	/test/hello	world

request_uri	=	/test/hello%20world?a=3&b=4

Variables	with	Infinite	Names	

There	is	another	very	common	built-in	variable	that	does	not	have	a	fixed	variable	name.	Instead,	It	has	infinite	variations.	That	is,	all
those	variables	whose	names	have	the	prefix	arg_,	like	$arg_foo	and	$arg_bar.	Let's	just	call	it	the	$arg_XXX	"variable	group".
For	example,	the	$arg_name	variable	is	evaluated	to	the	value	of	the	name	URI	argument	for	the	current	request.	Also,	the	URI
argument's	value	obtained	here	is	not	decoded	yet,	potentially	containing	the	%XX	sequences.	Let's	check	out	a	complete	example:

location	/test	{

				echo	"name:	$arg_name";

				echo	"class:	$arg_class";

}

Then	we	test	this	interface	with	various	different	URI	argument	combinations:

$	curl	'http://localhost:8080/test'

name:

class:

$	curl	'http://localhost:8080/test?name=Tom&class=3'

name:	Tom

class:	3

$	curl	'http://localhost:8080/test?name=hello%20world&class=9'

name:	hello%20world

class:	9

In	fact,	$arg_name	does	not	only	match	the	name	argument	name,	but	also	NAME	or	even	Name.	That	is,	the	letter	case	does	not
matter	here:

http://wiki.nginx.org/HttpRewiteModule#set
http://wiki.nginx.org/HttpCoreModule#.24uri
http://nginx.org/en/docs/http/ngx_http_core_module.html
http://wiki.nginx.org/HttpCoreModule#.24request_uri
http://wiki.nginx.org/HttpCoreModule#.24uri
http://wiki.nginx.org/HttpCoreModule#.24request_uri
http://wiki.nginx.org/HttpCoreModule#.24arg_PARAMETER

$	curl	'http://localhost:8080/test?NAME=Marry'

name:	Marry

class:

$	curl	'http://localhost:8080/test?Name=Jimmy'

name:	Jimmy

class:

Behind	the	scene,	Nginx	just	converts	the	URI	argument	names	into	the	pure	lower-case	form	before	matching	against	the	name
specified	by	$arg_XXX.

If	you	want	to	decode	the	special	sequences	like	%20	in	the	URI	argument	values,	then	you	could	use	the	set_unescape_uri	directive
provided	by	the	3rd-party	module	ngx_set_misc.

location	/test	{

				set_unescape_uri	$name	$arg_name;

				set_unescape_uri	$class	$arg_class;

				echo	"name:	$name";

				echo	"class:	$class";

}

Let's	check	out	the	actual	effect:

$	curl	'http://localhost:8080/test?name=hello%20world&class=9'

name:	hello	world

class:	9

The	space	has	indeed	been	decoded!

Another	thing	that	we	can	observe	from	this	example	is	that	the	set_unescape_uri	directive	can	also	implicitly	create	Nginx	user-
defined	variables,	just	like	the	set	directive.	We	will	discuss	the	ngx_set_misc	module	in	more	detail	in	future	chapters.

This	type	of	variables	like	$arg_XXX	possesses	infinite	number	of	possible	names,	so	they	do	not	correspond	to	any	value	containers.
Furthermore,	such	variables	are	handled	in	a	very	specific	way	within	the	Nginx	core.	It	is	thus	not	possible	for	3rd-party	modules	to
introduce	such	magical	built-in	variables	of	their	own.

The	Nginx	core	offers	a	lot	of	such	built-in	variables	in	addition	to	$arg_XXX,	like	the	$cookie_XXX	variable	group	for	fetching
HTTP	cookie	values,	the	$http_XXX	variable	group	for	fetching	request	headers,	as	well	as	the	$sent_http_XXX	variable	group	for
retrieving	response	headers.	We	will	not	go	into	the	details	for	each	of	them	here.	Interested	readers	can	refer	to	the	official
documentation	for	the	ngx_http_core	module.

Read-only	Built-in	Variables	

All	the	user-defined	variables	are	writable.	Actually	the	way	that	we	declare	or	create	such	variables	so	far	is	to	use	a	configure
directive,	like	set,	that	performs	value	assignment	at	request	time.	But	it	is	not	necessarily	the	case	for	built-in	variables.

Most	of	the	built-in	variables	are	effectively	read-only,	like	the	$uri	and	$request_uri	variables	that	we	just	introduced	earlier.
Assignments	to	such	read-only	variables	must	always	be	avoided.	Otherwise	it	will	lead	to	unexpected	consequences,	for	example,

?	location	/bad	{

?					set	$uri	/blah;

?					echo	$uri;

?	}

This	problematic	configuration	just	triggers	a	confusing	error	message	when	Nginx	is	started:

[emerg]	the	duplicate	"uri"	variable	in	...

Attempts	of	writing	to	some	other	read-only	built-in	variables	like	$arg_XXX	will	just	lead	to	server	crashes	in	some	particular	Nginx
versions.

http://wiki.nginx.org/HttpCoreModule#.24arg_PARAMETER
http://wiki.nginx.org/HttpSetMiscModule#set_unescape_uri
http://wiki.nginx.org/HttpSetMiscModule
http://wiki.nginx.org/HttpSetMiscModule#set_unescape_uri
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpSetMiscModule
http://wiki.nginx.org/HttpCoreModule#.24arg_PARAMETER
http://wiki.nginx.org/HttpCoreModule#.24arg_PARAMETER
http://wiki.nginx.org/HttpCoreModule#.24cookie_COOKIE
http://wiki.nginx.org/HttpCoreModule#.24http_HEADER
http://wiki.nginx.org/HttpCoreModule#.24sent_http_HEADER
http://nginx.org/en/docs/http/ngx_http_core_module.html
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpCoreModule#.24uri
http://wiki.nginx.org/HttpCoreModule#.24request_uri
http://wiki.nginx.org/HttpCoreModule#.24arg_PARAMETER

Nginx	Variables	(03)	
Writable	Built-in	Variable	$args	

Some	built-in	variables	are	writable	as	well.	For	instance,	when	reading	the	built-in	variable	$args,	we	get	the	URL	query	string	of	the
current	request,	but	when	writing	to	it,	we	are	effectively	modifying	the	query	string.	Here	is	such	an	example:

location	/test	{

				set	$orig_args	$args;

				set	$args	"a=3&b=4";

				echo	"original	args:	$orig_args";

				echo	"args:	$args";

}

Here	we	first	save	the	original	URL	query	string	into	our	own	variable	$orig_args,	then	modify	the	current	query	string	by
overriding	the	$args	variable,	and	finally	output	the	variables	$orig_args	and	$args,	respectively,	with	the	echo	directive.	Let's	test
it	like	this:

$	curl	'http://localhost:8080/test'

original	args:

args:	a=3&b=4

$	curl	'http://localhost:8080/test?a=0&b=1&c=2'

original	args:	a=0&b=1&c=2

args:	a=3&b=4

In	the	first	test,	we	did	not	provide	any	URL	query	string,	hence	the	empty	output	for	the	$orig_args	variable.	And	in	both	tests,
the	current	query	string	was	forcibly	overridden	to	the	new	value	a=3&b=4,	regardless	of	the	presence	of	a	query	string	in	the	original
request.

It	should	be	noted	that	the	$args	variable	here	no	longer	owns	a	value	container	as	user	variables,	just	like	$arg_XXX.	When	reading
$args,	Nginx	will	execute	a	special	piece	of	code,	fetching	data	from	a	particular	place	where	the	Nginx	core	stores	the	URL	query
string	for	the	current	request.	On	the	other	hand,	when	we	overwrite	$args,	Nginx	will	execute	another	special	piece	of	code,	storing
new	value	into	the	same	place	in	the	core.	Other	parts	of	Nginx	also	read	the	same	place	whenever	the	query	string	is	needed,	so	our
modification	to	$args	will	immediately	affect	all	the	other	parts'	functionality	later	on.	Let's	see	an	example	for	this:

location	/test	{

				set	$orig_a	$arg_a;

				set	$args	"a=5";

				echo	"original	a:	$orig_a";

				echo	"a:	$arg_a";

}

Here	we	first	save	the	value	of	the	built-in	varaible	$arg_a,	the	value	of	the	original	request's	URL	argument	a,	into	our	user	variable
$orig_a,	then	change	the	URL	query	string	to	a=5	by	assigning	the	new	value	to	the	built-in	variable	$args,	and	finally	output	the
variables	$orig_a	and	$arg_a,	respectively.	Because	modifications	to	$args	effectively	change	the	URL	query	string	of	the	current
request	for	the	whole	server,	the	value	of	the	built-in	variable	$arg_XXX	should	also	change	accordingly.	The	test	result	verifies	this:

$	curl	'http://localhost:8080/test?a=3'

original	a:	3

a:	5

We	can	see	that	the	initial	value	of	$arg_a	is	3	since	the	URL	query	string	of	the	original	request	is	a=3.	But	the	final	value	of
$arg_a	automatically	becomes	5	after	we	modify	$args	with	the	value	a=5.

Below	is	another	example	to	demonstrate	that	assignments	to	$args	also	affect	the	HTTP	proxy	module	ngx_proxy.

server	{

				listen	8080;

				location	/test	{

http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpCoreModule#.24arg_PARAMETER
http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpCoreModule#.24arg_PARAMETER
http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpProxyModule

								set	$args	"foo=1&bar=2";

								proxy_pass	http://127.0.0.1:8081/args;

				}

}

server	{

				listen	8081;

				location	/args	{

								echo	"args:	$args";

				}

}

Two	virtual	servers	are	defined	here	in	the	http	configuration	block	(omitted	for	brevity).

The	first	virtual	server	is	listening	at	the	local	port	8080.	Its	/test	location	first	updates	the	current	URL	query	string	to	the	value
foo=1&bar=2	by	writing	to	$args,	then	sets	up	an	HTTP	reverse	proxy	via	the	proxy_pass	directive	of	the	ngx_proxy	module,
targeting	the	HTTP	service	/args	on	the	local	port	8081.	By	default	the	ngx_proxy	module	automatically	forwards	the	current	URL
query	string	to	the	remote	HTTP	service.

The	"remote	HTTP	service"	on	the	local	port	8081	is	provided	by	the	second	virtual	server	defined	by	ourselves,	where	we	output	the
current	URL	query	string	via	the	echo	directive	in	location	/args.	By	doing	this,	we	can	investigate	the	actual	URL	query	string
forwarded	by	the	ngx_proxy	module	from	the	first	virtual	server.

Let's	access	the	/test	interface	exposed	by	the	first	virtual	server.

$	curl	'http://localhost:8080/test?blah=7'

args:	foo=1&bar=2

We	can	see	that	the	URL	query	string	is	first	rewritten	to	foo=1&bar=2	even	though	the	original	request	takes	the	value	blah=7,
then	it	is	forwarded	to	the	/args	interface	of	the	second	virtual	server	via	the	proxy_pass	directive,	and	finally	its	value	is	output	to
the	client.

To	summarize,	the	assignment	to	$args	also	successfully	influences	the	behavior	of	the	ngx_proxy	module.

http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpProxyModule#proxy_pass
http://wiki.nginx.org/HttpProxyModule
http://wiki.nginx.org/HttpProxyModule
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpProxyModule
http://wiki.nginx.org/HttpProxyModule#proxy_pass
http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpProxyModule

Variable	"Get	Handlers"	and	"Set	Handlers"	

We	have	already	learned	in	previous	sections	that	when	reading	the	built-in	variable	$args,	Nginx	executes	a	special	piece	of	code	to
obtain	a	value	on-the-fly	and	when	writing	to	this	variable,	Nginx	executes	another	special	piece	of	code	to	propagate	the	change.	In
Nginx's	terminology,	the	special	code	executed	for	reading	the	variable	is	called	"get	handler"	and	the	code	for	writing	to	the	variable
is	called	"set	handler".	Different	Nginx	modules	usually	prepare	different	"get	handlers"	and	"set	handlers"	for	their	own	variables,
which	effectively	put	magic	into	these	variables'	behavior.

Such	techniques	are	not	uncommon	in	the	computing	world.	For	example,	in	object-oriented	programming	(OOP),	the	class	designer
usually	does	not	expose	the	member	variable	of	the	class	directly	to	the	user	programmer,	but	instead	provides	two	methods	for
reading	from	and	writing	to	the	member	variable,	respectively.	Such	class	methods	are	often	called	"accessors".	Below	is	an	example
in	the	C++	programming	language:

#include	<string>

using	namespace	std;

class	Person	{

public:

				const	string	get_name()	{

								return	m_name;

				}

				void	set_name(const	string	name)	{

								m_name	=	name;

				}

private:

				string	m_name;

};

In	this	C++	class	Person,	we	provide	two	public	methods,	get_name	and	set_name,	to	serve	as	the	"accessors"	for	the	private
member	variable	m_name.

The	benefits	of	such	design	are	obvious.	The	class	designer	can	execute	arbitrary	code	in	the	"accessors",	to	implement	any	extra
business	logic	or	useful	side	effects,	like	automatically	updating	other	member	variables	depending	on	the	current	member,	or	updating
the	corresponding	field	in	a	database	associated	with	the	current	object.	For	the	latter	case,	it	is	possible	that	the	member	variable	does
not	exist	at	all,	or	that	the	member	variable	just	serves	as	a	data	cache	to	mitigate	the	pressure	on	the	back-end	database.

Corresponding	to	the	concept	of	"accessors"	in	OOP,	Nginx	variables	also	support	binding	custom	"get	handlers"	and	"set	handlers".
Additionally,	not	all	Nginx	variables	own	a	container	to	hold	values.	Some	variables	without	a	container	just	behave	like	a	magical
container	by	means	of	its	fancy	"get	handler"	and	"set	handler".	In	fact,	when	a	variable	is	being	created	at	"configure	time",	the
creating	Nginx	module	must	make	a	decision	on	whether	to	allocate	a	value	container	for	it	and	whether	to	attach	a	custom	"get
handler"	and/or	a	"set	handler"	to	it.

Those	variables	owning	a	value	container	are	called	"indexed	variables"	in	Nginx's	terminology.	Otherwise,	they	are	said	to	be	not
indexed.

We	already	know	that	the	"variable	groups"	like	$arg_XXX	discussed	in	earlier	sections	do	not	have	a	value	container	and	thus	are	not
indexed.	When	reading	$arg_XXX,	it	is	its	"get	handler"	at	work,	that	is,	its	"get	handler"	scans	the	current	URL	query	string	on-the-
fly,	extracting	the	value	of	the	specified	URL	argument.	Many	beginners	misunderstand	the	way	$arg_XXX	is	implemented;	they
assume	that	Nginx	will	parse	all	the	URL	arguments	in	advance	and	prepare	the	values	for	all	those	non-empty	$arg_XXX	variables
before	they	are	actually	read.	This	is	not	true,	however.	Nginx	never	tries	to	parse	all	the	URL	arguments	beforehand,	but	rather	scans
the	whole	URL	query	string	for	a	particular	argument	in	a	"get	handler"	every	time	that	argument	is	requested	by	reading	the
corresponding	$arg_XXX	variable.	Similarly,	when	reading	the	built-in	variable	$cookie_XXX,	its	"get	handler"	just	scans	the
Cookie	request	headers	for	the	cookie	name	specified.

http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpCoreModule#.24arg_PARAMETER
http://wiki.nginx.org/HttpCoreModule#.24arg_PARAMETER
http://wiki.nginx.org/HttpCoreModule#.24arg_PARAMETER
http://wiki.nginx.org/HttpCoreModule#.24arg_PARAMETER
http://wiki.nginx.org/HttpCoreModule#.24arg_PARAMETER
http://wiki.nginx.org/HttpCoreModule#.24cookie_COOKIE

Nginx	Variables	(04)	
Value	Containers	for	Caching	&	ngx_map	

Some	Nginx	variables	choose	to	use	their	value	containers	as	a	data	cache	when	the	"get	handler"	is	configured.	In	this	setting,	the	"get
handler"	is	run	only	once,	i.e.,	at	the	first	time	the	variable	is	read,	which	reduces	overhead	when	the	variable	is	read	multiple	times
during	its	lifetime.	Let's	see	an	example	for	this.

map	$args	$foo	{

				default					0;

				debug							1;

}

server	{

				listen	8080;

				location	/test	{

								set	$orig_foo	$foo;

								set	$args	debug;

								echo	"original	foo:	$orig_foo";

								echo	"foo:	$foo";

				}

}

Here	we	use	the	map	directive	from	the	standard	module	ngx_map	for	the	first	time,	which	deserves	some	introduction.	The	word	map
here	means	mapping	or	correspondence.	For	example,	functions	in	Maths	are	a	kind	of	"mapping".	And	Nginx's	map	directive	is	used
to	define	a	"mapping"	relationship	between	two	Nginx	variables,	or	in	other	words,	"function	relationship".	Back	to	this	example,	we
use	the	map	directive	to	define	the	"mapping"	relationship	between	user	variable	$foo	and	built-in	variable	$args.	When	using	the
Math	function	notation,	y	=	f(x),	our	$args	variable	is	effectively	the	"independent	variable",	x,	while	$foo	is	the	"dependent
variable",	y.	That	is,	the	value	of	$foo	depends	on	the	value	of	$args,	or	rather,	we	map	the	value	of	$args	onto	the	$foo	variable	(in
some	way).

Now	let's	look	at	the	exact	mapping	rule	defined	by	the	map	directive	in	this	example.

map	$args	$foo	{

				default					0;

				debug							1;

}

The	first	line	within	the	curly	braces	is	a	special	rule	condition,	that	is,	this	condition	holds	if	and	only	if	other	conditions	all	fail.	When
this	"default"	condition	holds,	the	"dependent	variable"	$foo	is	assigned	by	the	value	0.	The	second	line	within	the	curly	braces
means	that	the	"dependent	variable"	$foo	is	assigned	by	the	value	1	if	the	"independent	variable"	$args	matches	the	string	value
debug.	Combining	these	two	lines,	we	obtain	the	following	complete	mapping	rule:	if	the	value	of	$args	is	debug,	variable	$foo
gets	the	value	1;	otherwise	$foo	gets	the	value	0.	So	essentially,	this	is	a	conditional	assignment	to	the	variable	$foo.

Now	that	we	understand	what	the	map	directive	does,	let's	look	at	the	definition	of	location	/test.	We	first	save	the	value	of
$foo	into	another	user	variable	$orig_foo,	then	overwrite	the	value	of	$args	to	debug,	and	finally	output	the	values	of
$orig_foo	and	$foo,	respectively.

Intuitively,	after	we	overwrite	the	value	of	$args	to	debug,	the	value	of	$foo	should	automatically	get	adjusted	to	1	according	to	the
mapping	rule	defined	earlier,	regardless	of	the	original	value	of	$foo.	But	the	test	result	suggests	the	other	way	around.

$	curl	'http://localhost:8080/test'

original	foo:	0

foo:	0

The	first	output	line	indicates	that	the	value	of	$orig_foo	is	0,	which	is	exactly	what	we	expected:	the	original	request	does	not	take
a	URL	query	string,	so	the	initial	value	of	$args	is	empty,	leading	to	the	0	initial	value	of	$foo,	according	to	the	"default"	condition	in
our	mapping	rule.

http://wiki.nginx.org/HttpMapModule#map
http://wiki.nginx.org/HttpMapModule
http://wiki.nginx.org/HttpMapModule#map
http://wiki.nginx.org/HttpMapModule#map
http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpMapModule#map
http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpMapModule#map
http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpCoreModule#.24args

But	surprisingly,	the	second	output	line	indicates	that	the	final	value	of	$foo	is	still	0,	even	after	we	overwrite	$args	to	the	value
debug.	This	apparently	violates	our	mapping	rule	because	when	$args	takes	the	value	debug,	the	value	of	$foo	should	really	be	1.
So	what	is	happening	here?

Actually	the	reason	is	pretty	simple:	when	the	first	time	variable	$foo	is	read,	its	value	computed	by	ngx_map's	"get	handler"	is
cached	in	its	value	container.	We	already	learned	earlier	that	Nginx	modules	may	choose	to	use	the	value	container	of	the	variable
created	by	themselves	as	a	data	cache	for	its	"get	handler".	Obviously,	the	ngx_map	module	considers	the	mapping	computation
between	variables	expensive	enough	and	caches	the	result	automatically,	so	that	the	next	time	the	same	variable	is	read	within	the
lifetime	of	the	current	request,	Nginx	can	just	return	the	cached	result	without	invoking	the	"get	handler"	again.

To	verify	this	further,	we	can	try	specifying	the	URL	query	string	as	debug	in	the	original	request.

$	curl	'http://localhost:8080/test?debug'

original	foo:	1

foo:	1

It	can	be	seen	that	the	value	of	$orig_foo	becomes	1,	complying	with	our	mapping	rule.	And	subsequent	readings	of	$foo	always
yield	the	same	cached	result,	1,	regardless	of	the	new	value	of	$args	later	on.

The	map	directive	is	actually	a	unique	example,	because	it	not	only	registers	a	"get	handler"	for	the	user	variable,	but	also	allows	the
user	to	define	the	computing	rule	in	the	"get	handler"	directly	in	the	Nginx	configuration	file.	Of	course,	the	rule	that	can	be	defined
here	is	limited	to	simple	mapping	relations	with	another	variable.	Meanwhile,	it	must	be	made	clear	that	not	all	the	variables	using	a
"get	handler"	will	cache	the	result.	For	instance,	we	have	already	seen	earlier	that	the	$arg_XXX	variable	does	not	use	its	value
container	at	all.

Similar	to	the	ngx_map	module,	the	standard	module	ngx_geo	that	we	encountered	earlier	also	enables	value	caching	for	the	variables
created	by	its	geo	directive.

A	Side	Note	for	Use	Contexts	of	Directives	

In	the	previous	example,	we	should	also	note	that	the	map	directive	is	put	outside	the	server	configuration	block,	that	is,	it	is	defined
directly	within	the	outermost	http	configuration	block.	Some	readers	may	be	curious	about	this	setting,	since	we	only	use	it	in
location	/test	after	all.	If	we	try	putting	the	map	statement	within	the	location	block,	however,	we	will	get	the	following
error	while	starting	Nginx:

[emerg]	"map"	directive	is	not	allowed	here	in	...

So	it	is	explicitly	prohibited.	In	fact,	it	is	only	allowed	to	use	the	map	directive	in	the	http	block.	Every	configure	directive	does	have
a	pre-defined	set	of	use	contexts	in	the	configuration	file.	When	in	doubt,	always	refer	to	the	corresponding	documentation	for	the
exact	use	contexts	of	a	particular	directive.

http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpMapModule
http://wiki.nginx.org/HttpMapModule
http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpMapModule#map
http://wiki.nginx.org/HttpCoreModule#.24arg_PARAMETER
http://wiki.nginx.org/HttpMapModule
http://wiki.nginx.org/HttpGeoModule
http://wiki.nginx.org/HttpGeoModule#geo
http://wiki.nginx.org/HttpMapModule#map
http://wiki.nginx.org/HttpMapModule#map
http://wiki.nginx.org/HttpMapModule#map

Lazy	Evaluation	of	Variable	Values	

Many	Nginx	freshmen	would	worry	that	the	use	of	the	map	directive	within	the	global	scope	(i.e.,	the	http	block)	will	lead	to
unnecessary	variable	value	computation	and	assignment	for	all	the	locations	in	all	the	virtual	servers	even	if	only	one	location
block	actually	uses	it.	Fortunately,	this	is	not	what	is	happening	here.	We	have	already	learned	how	the	map	directive	works.	It	is	the
"get	handler"	(registered	by	the	ngx_map	module)	that	performs	the	value	computation	and	related	assignment.	And	the	"get	handler"
will	not	run	at	all	unless	the	corresponding	user	variable	is	actually	being	read.	Therefore,	for	those	requests	that	never	access	that
variable,	there	cannot	be	any	(useless)	computation	involved.

The	technique	that	postpones	the	value	computation	off	to	the	point	where	the	value	is	actually	needed	is	called	"lazy	evaluation"	in
the	computing	world.	Programming	languages	natively	offering	"lazy	evaluation"	is	not	very	common	though.	The	most	famous
example	is	the	Haskell	programming	language,	where	lazy	evaluation	is	the	default	semantics.	In	contrast	with	"lazy	evaluation",	it	is
much	more	common	to	see	"eager	evaluation".	We	are	lucky	to	see	examples	of	lazy	evaluation	here	in	the	ngx_map	module,	but	the
"eager	evaluation"	semantics	is	also	much	more	common	in	the	Nginx	world.	Consider	the	following	set	statement	that	cannot	be
simpler:

set	$b	"$a,$a";

When	running	the	set	directive,	Nginx	eagerly	computes	and	assigns	the	new	value	for	the	variable	$b	without	postponing	to	the	point
when	$b	is	actually	read	later	on.	Similarly,	the	set_unescape_uri	directive	also	evaluates	eagerly.

http://wiki.nginx.org/HttpMapModule#map
http://wiki.nginx.org/HttpMapModule#map
http://wiki.nginx.org/HttpMapModule
http://wiki.nginx.org/HttpMapModule
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpSetMiscModule#set_unescape_uri

Nginx	Variables	(05)	
Variables	in	Subrequests	

A	Detour	to	Subrequests	

We	have	seen	earlier	that	the	lifetime	of	variable	containers	is	bound	to	the	request,	but	I	owe	you	a	formal	definition	of	"requests"
there.	You	might	have	assumed	that	the	"requests"	in	that	context	are	just	those	HTTP	requests	initiated	from	the	client	side.	In	fact,
there	are	two	kinds	of	"requests"	in	the	Nginx	world.	One	is	called	"main	requests",	and	the	other	is	called	"subrequests".

Main	requests	are	those	initiated	externally	by	HTTP	clients.	All	the	examples	that	we	have	seen	so	far	involve	main	requests	only,
including	those	doing	"internal	redirections"	via	the	echo_exec	or	rewrite	directive.

Whereas	subrequests	are	a	special	kind	of	requests	initiated	from	within	the	Nginx	core.	But	please	do	not	confuse	subrequests	with
those	HTTP	requests	created	by	the	ngx_proxy	modules!	Subrequests	may	look	very	much	like	an	HTTP	request	in	appearance,	their
implementation,	however,	has	nothing	to	do	with	neither	the	HTTP	protocol	nor	any	kind	of	socket	communication.	A	subrequest	is	an
abstract	invocation	for	decomposing	the	task	of	the	main	request	into	smaller	"internal	requests"	that	can	be	served	independently	by
multiple	different	location	blocks,	either	in	series	or	in	parallel.	"Subrequests"	can	also	be	recursive:	any	subrequest	can	initiate
more	sub-subrequests,	targeting	other	location	blocks	or	even	the	current	location	itself.	According	to	Nginx's	terminology,	if
request	A	initiates	a	subrequest	B,	then	A	is	called	the	"parent	request"	of	B.	It	is	worth	mentioning	that	the	Apache	web	server	also
has	the	concept	of	subrequests	for	long,	so	readers	coming	from	that	world	should	be	no	stranger	to	this.

Let's	check	out	an	example	using	subrequests:

location	/main	{

				echo_location	/foo;

				echo_location	/bar;

}

location	/foo	{

				echo	foo;

}

location	/bar	{

				echo	bar;

}

Here	in	location	/main,	we	use	the	echo_location	directive	from	the	ngx_echo	module	to	initiate	two	GET-typed	subrequests
targeting	/foo	and	/bar,	respectively.	The	subrequests	initiated	by	echo_location	are	always	running	sequentially	according	to	their
literal	order	in	the	configuration	file.	Therefore,	the	second	/bar	request	will	not	be	fired	until	the	first	/foo	request	completes
processing.	The	response	body	of	these	two	subrequests	get	concatenated	together	according	to	their	running	order,	to	form	the	final
response	body	of	their	parent	request	(for	/main):

$	curl	'http://localhost:8080/main'

foo

bar

It	should	be	noted	that	the	communication	of	location	blocks	via	subrequests	is	limited	within	the	same	server	block	(i.e.,	the
same	virtual	server	configuration),	so	when	the	Nginx	core	processes	a	subrequest,	it	just	calls	a	few	C	functions	behind	the	scene,
without	doing	any	kind	of	network	or	UNIX	domain	socket	communication.	For	this	reason,	subrequests	are	extremely	efficient.

Independent	Variable	Containers	in	Subrequests	

Back	to	our	earlier	discussion	for	the	lifetime	of	Nginx	variable	containers,	now	we	can	still	state	that	the	lifetime	is	bound	to	the
current	request,	and	every	request	does	have	its	own	copy	of	all	the	variable	containers.	It	is	just	that	the	"request"	here	can	be	either	a
main	request,	or	a	subrequest.	Variables	with	the	same	name	between	a	parent	request	and	a	subrequest	will	generally	not	interfere
with	each	other.	Let's	do	a	small	experiment	to	confirm	this:

location	/main	{

				set	$var	main;

				echo_location	/foo;

http://wiki.nginx.org/HttpEchoModule#echo_exec
http://wiki.nginx.org/HttpRewriteModule#rewrite
http://wiki.nginx.org/HttpProxyModule
http://wiki.nginx.org/HttpEchoModule#echo_location
http://wiki.nginx.org/HttpEchoModule
http://wiki.nginx.org/HttpEchoModule#echo_location

				echo_location	/bar;

				echo	"main:	$var";

}

location	/foo	{

				set	$var	foo;

				echo	"foo:	$var";

}

location	/bar	{

				set	$var	bar;

				echo	"bar:	$var";

}

In	this	sample,	we	assign	different	values	to	the	variable	$var	in	three	location	blocks,	/main,	/foo,	and	/bar,	and	output	the
value	of	$var	in	all	these	locations.	In	particular,	we	intentionally	output	the	value	of	$var	in	location	/main	after	calling	the
two	subrequests,	so	if	value	changes	of	$var	in	the	subrequests	can	affect	their	parent	request,	we	should	see	a	new	value	output	in
location	/main.	The	result	of	requesting	/main	is	as	follows:

$	curl	'http://localhost:8080/main'

foo:	foo

bar:	bar

main:	main

Apparently,	the	assignments	to	variable	$var	in	those	two	subrequests	do	not	affect	the	main	request	/main	at	all.	This	successfully
verifies	that	both	the	main	request	and	its	subrequests	do	own	different	copies	of	variable	containers.

Shared	Variable	Containers	among	Requests	

Unfortunately,	subrequests	initiated	by	certain	Nginx	modules	do	share	variable	containers	with	their	parent	requests,	like	those
initiated	by	the	3rd-party	module	ngx_auth_request.	Below	is	such	an	example:

location	/main	{

				set	$var	main;

				auth_request	/sub;

				echo	"main:	$var";

}

location	/sub	{

				set	$var	sub;

				echo	"sub:	$var";

}

Here	in	location	/main,	we	first	assign	the	initial	value	main	to	variable	$var,	then	fire	a	subrequest	to	/sub	via	the
auth_request	directive	from	the	ngx_auth_request	module,	and	finally	output	the	value	of	$var.	Note	that	in	location	/sub
we	intentionally	overwrite	the	value	of	$var	to	sub.	When	accessing	/main,	we	get

$	curl	'http://localhost:8080/main'

main:	sub

Obviously,	the	value	change	of	$var	in	the	subrequest	to	/sub	does	affect	the	main	request	to	/main.	Thus	the	variable	container	of
$var	is	indeed	shared	between	the	main	request	and	the	subrequest	created	by	the	ngx_auth_request	module.

For	the	previous	example,	some	readers	might	ask:	"why	doesn't	the	response	body	of	the	subrequest	appear	in	the	final	output?"	The
answer	is	simple:	it	is	just	because	the	auth_request	directive	discards	the	response	body	of	the	subrequest	it	manages,	and	only
checks	the	response	status	code	of	the	subrequest.	When	the	status	code	looks	good,	like	200,	auth_request	will	just	allow	Nginx
continue	processing	the	main	request;	otherwise	it	will	immediately	abort	the	main	request	by	returning	a	403	error	page,	for	example.
In	our	example,	the	subrequest	to	/sub	just	return	a	200	response	implicitly	created	by	the	echo	directive	in	location	/sub.

Even	though	sharing	variable	containers	among	the	main	request	and	all	its	subrequests	could	make	bidirectional	data	exchange	easier,
it	could	also	lead	to	unexpected	subtle	issues	that	are	hard	to	debug	in	real-world	configurations.	Because	users	often	forget	that	a
variable	with	the	same	name	is	actually	used	in	some	deeply	embedded	subrequest	and	just	use	it	for	something	else	in	the	main
request,	this	variable	could	get	unexpectedly	modified	during	processing.	Such	bad	side	effects	make	many	3rd-party	modules	like

http://mdounin.ru/hg/ngx_http_auth_request_module/
http://mdounin.ru/hg/ngx_http_auth_request_module/
http://mdounin.ru/hg/ngx_http_auth_request_module/
http://wiki.nginx.org/HttpEchoModule#echo

ngx_echo,	ngx_lua	and	ngx_srcache	choose	to	disable	the	variable	sharing	behavior	for	subrequests	by	default.

http://wiki.nginx.org/HttpEchoModule
http://wiki.nginx.org/HttpLuaModule
http://wiki.nginx.org/HttpSRCacheModule

Nginx	Variables	(06)	
Built-in	Variables	in	Subrequests	

There	are	some	subtleties	involved	in	using	Nginx	built-in	variables	in	the	context	of	a	subrequest.	We	will	discuss	the	details	in	this
section.

Built-in	Variables	Sensitive	to	the	Subrequest	Context	

We	already	know	that	most	built-in	variables	are	not	simple	value	containers.	They	behave	differently	than	user	variables	by
registering	"get	handlers"	and/or	"set	handlers".	Even	when	they	do	own	a	value	container,	they	usually	just	use	the	container	as	a
result	cache	for	their	"get	handlers".	The	$args	variable	we	discussed	earlier,	for	example,	just	uses	its	"get	handler"	to	return	the	URL
query	string	for	the	current	request.	The	current	request	here	can	also	be	a	subrequest,	so	when	reading	$args	in	a	subrequest,	its	"get
handler"	should	naturally	return	the	query	string	for	the	subrequest.	Let's	see	such	an	example:

location	/main	{

				echo	"main	args:	$args";

				echo_location	/sub	"a=1&b=2";

}

location	/sub	{

				echo	"sub	args:	$args";

}

Here	in	the	/main	interface,	we	first	echo	out	the	value	of	$args	for	the	current	request,	and	then	use	echo_location	to	initiate	a
subrequest	to	/sub.	It	should	be	noted	that	here	we	give	a	second	argument	to	the	echo_location	directive,	to	specify	the	URL	query
string	for	the	subrequest	being	fired	(the	first	argument	is	the	URI	for	the	subrequest,	as	we	already	know).	Finally,	we	define	the
/sub	interface	and	print	out	the	value	of	$args	in	there.	Querying	the	/main	interface	gives

$	curl	'http://localhost:8080/main?c=3'

main	args:	c=3

sub	args:	a=1&b=2

It	is	clear	that	when	$args	is	read	in	the	main	request	(to	/main),	its	value	is	the	URL	query	string	of	the	main	request;	whereas	when
in	the	subrequest	(to	/foo),	it	is	the	query	string	of	the	subrequest,	a=1&b=2.	This	behavior	indeed	matches	our	intuition.

Just	like	$args,	when	the	built-in	variable	$uri	is	used	in	a	subrequest,	its	"get	handler"	also	returns	the	(decoded)	URI	of	the	current
subrequest:

location	/main	{

				echo	"main	uri:	$uri";

				echo_location	/sub;

}

location	/sub	{

				echo	"sub	uri:	$uri";

}

Below	is	the	result	of	querying	/main:

$	curl	'http://localhost:8080/main'

main	uri:	/main

sub	uri:	/sub

The	output	is	what	we	would	expect.

Built-in	Variables	for	Main	Requests	Only	

Unfortunately,	not	all	built-in	variables	are	sensitive	to	the	context	of	subrequests.	Several	built-in	variables	always	act	on	the	main
request	even	when	they	are	used	in	a	subrequest.	The	built-in	variable	$request_method	is	such	an	exception.

Whenever	$request_method	is	read,	we	always	get	the	request	method	name	(such	as	GET	and	POST)	for	the	main	request,	no	matter

http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpEchoModule#echo_location
http://wiki.nginx.org/HttpEchoModule#echo_location
http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpCoreModule#.24args
http://wiki.nginx.org/HttpCoreModule#.24uri
http://wiki.nginx.org/HttpCoreModule#.24request_method
http://wiki.nginx.org/HttpCoreModule#.24request_method

whether	the	current	request	is	a	subrequest	or	not.	Let's	test	it	out:

location	/main	{

				echo	"main	method:	$request_method";

				echo_location	/sub;

}

location	/sub	{

				echo	"sub	method:	$request_method";

}

In	this	example,	the	/main	and	/sub	interfaces	both	output	the	value	of	$request_method.	Meanwhile,	we	initiate	a	GET	subrequest
to	/sub	via	the	echo_location	directive	in	/main.	Now	let's	do	a	POST	request	to	/main:

$	curl	--data	hello	'http://localhost:8080/main'

main	method:	POST

sub	method:	POST

Here	we	use	the	--data	option	of	the	curl	utility	to	specify	our	POST	request	body,	also	this	option	makes	curl	use	the	POST
method	for	the	request.	The	test	result	turns	out	as	we	predicted:	the	variable	$request_method	is	evaluated	to	the	main	request's
method	name,	POST,	despite	its	use	in	a	GET	subrequest.

Some	readers	might	challenge	our	conclusion	here	by	pointing	out	that	we	did	not	rule	out	the	possibility	that	the	value	of
$request_method	got	cached	at	its	first	reading	in	the	main	request	and	what	we	were	seeing	in	the	subrequest	was	actually	the	cached
value	that	was	evaluated	earlier	in	the	main	request.	This	concern	is	unnecessary,	however,	because	we	have	also	learned	that	the
variable	container	required	by	data	caching	(if	any)	is	always	bound	to	the	current	request,	also	the	subrequests	initiated	by	the
ngx_echo	module	always	disable	variable	container	sharing	with	their	parent	requests.	Back	to	the	previous	example,	even	if	the	built-
in	variable	$request_method	in	the	main	request	used	the	value	container	as	the	data	cache	(actually	it	does	not),	it	cannot	affect	the
subrequest	by	any	means.

To	further	address	the	concern	of	these	readers,	let's	slightly	modify	the	previous	example	by	putting	the	echo	statement	for
$request_method	in	/main	after	the	echo_location	directive	that	runs	the	subrequest:

location	/main	{

				echo_location	/sub;

				echo	"main	method:	$request_method";

}

location	/sub	{

				echo	"sub	method:	$request_method";

}

Let's	test	it	again:

$	curl	--data	hello	'http://localhost:8080/main'

sub	method:	POST

main	method:	POST

No	change	in	the	output	can	be	observed,	except	that	the	two	output	lines	reversed	the	order	(since	we	exchange	the	order	of	those	two
ngx_echo	module's	directives).

Consequently,	we	cannot	obtain	the	method	name	of	a	subrequest	by	reading	the	$request_method	variable.	This	is	a	common	pitfall
for	freshmen	when	dealing	with	method	names	of	subrequests.	To	overcome	this	limitation,	we	need	to	turn	to	the	built-in	variable
$echo_request_method	provided	by	the	ngx_echo	module:

location	/main	{

				echo	"main	method:	$echo_request_method";

				echo_location	/sub;

}

location	/sub	{

				echo	"sub	method:	$echo_request_method";

}

We	are	finally	getting	what	we	want:

http://wiki.nginx.org/HttpCoreModule#.24request_method
http://wiki.nginx.org/HttpEchoModule#echo_location
http://wiki.nginx.org/HttpCoreModule#.24request_method
http://wiki.nginx.org/HttpCoreModule#.24request_method
http://wiki.nginx.org/HttpEchoModule
http://wiki.nginx.org/HttpCoreModule#.24request_method
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpCoreModule#.24request_method
http://wiki.nginx.org/HttpEchoModule#echo_location
http://wiki.nginx.org/HttpEchoModule
http://wiki.nginx.org/HttpCoreModule#.24request_method
http://wiki.nginx.org/HttpEchoModule#.24echo_request_method
http://wiki.nginx.org/HttpEchoModule

$	curl	--data	hello	'http://localhost:8080/main'

main	method:	POST

sub	method:	GET

Now	within	the	subrequest,	we	get	its	own	method	name,	GET,	as	expected,	and	the	main	request	method	remains	POST.

Similar	to	$request_method,	the	built-in	variable	$request_uri	also	always	returns	the	(non-decoded)	URL	for	the	main	request.	This	is
more	understandable,	however,	because	subrequests	are	essentially	faked	requests	inside	Nginx,	which	do	not	really	take	a	non-
decoded	raw	URL.

Variable	Container	Sharing	and	Value	Caching	Together	

In	the	previous	section,	some	of	the	readers	were	worried	about	the	case	that	variable	container	sharing	in	subrequests	and	value
caching	for	variable's	"get	handlers"	were	working	together.	If	it	were	indeed	the	case,	then	it	would	be	a	nightmare	because	it	would
be	really	really	hard	to	predict	what	is	going	on	by	just	looking	at	the	configuration	file.	In	previous	sections,	we	already	learned	that
the	subrequests	initiated	by	the	ngx_auth_request	module	are	sharing	the	same	variable	containers	with	their	parents,	so	we	can
maliciously	construct	such	a	horrible	example:

map	$uri	$tag	{

				default					0;

				/main							1;

				/sub								2;

}

server	{

				listen	8080;

				location	/main	{

								auth_request	/sub;

								echo	"main	tag:	$tag";

				}

				location	/sub	{

								echo	"sub	tag:	$tag";

				}

}

Here	we	use	our	old	friend,	the	map	directive,	to	map	the	value	of	the	built-in	variable	$uri	to	our	user	variable	$tag.	When	$uri	takes
the	value	/main,	the	value	1	is	assigned	to	$tag;	when	$uri	takes	the	value	/sub,	the	value	2	is	assigned	instead	to	$tag;	under	all
the	other	conditions,	0	is	assigned.	Next,	in	/main,	we	first	initiate	a	subrequest	to	/sub	by	using	the	auth_request	directive,
and	then	output	the	value	of	$tag.	And	within	/sub,	we	directly	output	the	value	of	$tag.	Guess	what	we	will	get	when	we	access
/main?

$	curl	'http://localhost:8080/main'

main	tag:	2

Ouch!	Didn't	we	map	the	value	/main	to	1?	Why	the	actual	output	for	/main	is	the	value,	2,	for	/sub?	What	is	going	on	here?

Actually	it	worked	like	this:	our	$tag	variable	was	first	read	in	the	subrequest	to	/sub,	and	the	"get	handler"	registered	by	map
computed	the	value	2	for	$tag	in	that	context	(because	$uri	was	/sub	in	the	subrequest)	and	the	value	2	got	cached	in	the	value
container	of	$tag	from	then	on.	Because	the	parent	request	shared	the	same	container	as	the	subrequest	created	by	auth_request,
when	the	parent	request	read	$tag	later	(after	the	subrequest	was	finished),	the	cached	value	2	was	directly	returned!	Such	results	can
indeed	be	very	surprising	at	first	glance.

From	this	example,	we	can	conclude	again	that	it	can	hardly	be	a	good	idea	to	enable	variable	container	sharing	in	subrequests.

http://wiki.nginx.org/HttpCoreModule#.24request_method
http://wiki.nginx.org/HttpCoreModule#.24request_uri
http://mdounin.ru/hg/ngx_http_auth_request_module/
http://wiki.nginx.org/HttpMapModule#map
http://wiki.nginx.org/HttpCoreModule#.24uri
http://wiki.nginx.org/HttpCoreModule#.24uri
http://wiki.nginx.org/HttpCoreModule#.24uri
http://wiki.nginx.org/HttpMapModule#map
http://wiki.nginx.org/HttpCoreModule#.24uri

Nginx	Variables	(07)	
Special	Value	"Invalid"	and	"Not	Found"	

We	have	mentioned	that	the	values	of	Nginx	variables	can	only	be	of	one	single	type,	that	is,	the	string	type,	but	variables	could	also
have	no	meaningful	values	at	all.	Variables	without	any	meaningful	values	still	take	a	special	value	though.	There	are	two	possible
special	values:	"invalid"	and	"not	found".

For	example,	when	a	user	variable	$foo	is	created	but	not	assigned	yet,	$foo	takes	the	special	value	of	"invalid".	And	when	the
current	URL	query	string	does	not	have	the	XXX	argument	at	all,	the	built-in	variable	$arg_XXX	takes	the	special	value	of	"not	found".

Both	"invalid"	and	"not	found"	are	special	values,	completely	different	from	an	empty	string	value	("").	This	is	very	similar	to	those
distinct	special	values	in	some	dynamic	programing	languages,	like	undef	in	Perl,	nil	in	Lua,	and	null	in	JavaScript.

We	have	seen	earlier	that	an	uninitialized	variable	is	evaluated	to	an	empty	string	when	used	in	an	interpolated	string,	its	real	value,
however,	is	not	an	empty	string	at	all.	It	is	the	"get	handler"	registered	by	the	set	directive	that	automatically	converts	the	"invalid"
special	value	into	an	empty	string.	To	verify	this,	let's	return	to	the	example	we	have	discussed	before:

location	/foo	{

				echo	"foo	=	[$foo]";

}

location	/bar	{

				set	$foo	32;

				echo	"foo	=	[$foo]";

}

When	accessing	/foo,	the	user	variable	$foo	is	uninitialized	when	used	in	the	interpolated	string	for	the	echo	directive.	The	output
shows	that	the	variable	is	evaluated	to	an	empty	string:

$	curl	'http://localhost:8080/foo'

foo	=	[]

From	the	output,	the	uninitialized	$foo	variable	behaves	just	like	taking	an	empty	string	value.	But	careful	readers	should	have
already	noticed	that,	for	the	request	above,	there	is	a	warning	in	the	Nginx	error	log	file	(which	is	logs/error.log	by	default):

[warn]	5765#0:	*1	using	uninitialized	"foo"	variable,	...

Who	on	earth	generates	this	warning?	The	answer	is	the	"get	handler"	of	$foo,	registered	by	the	set	directive.	When	$foo	is	read,
Nginx	first	checks	the	value	in	its	container	but	sees	the	"invalid"	special	value,	then	Nginx	decides	to	continue	running	$foo's	"get
handler",	which	first	prints	the	warning	(as	shown	above)	and	then	returns	an	empty	string	value,	which	thereafter	gets	cached	in
$foo's	value	container.

Careful	readers	should	have	identified	that	this	process	for	user	variables	is	exactly	the	same	as	the	mechanism	we	discussed	earlier	for
built-in	variables	involving	"get	handlers"	and	result	caching	in	value	containers.	Yes,	it	is	the	same	mechanism	in	action.	It	is	also
worth	noting	that	only	the	"invalid"	special	value	will	trigger	the	"get	handler"	invocation	in	the	Nginx	core	while	"not	found"	will	not.

The	warning	message	above	usually	indicates	a	typo	in	the	variable	name	or	misuse	of	uninitialized	variables,	not	necessarily	in	the
context	of	an	interpolated	string.	Because	of	the	existence	of	value	caching	in	the	variable	container,	this	warning	will	not	get	printed
multiple	times	in	the	lifetime	of	the	current	request.	Also,	the	ngx_rewrite	module	provides	the	uninitialized_variable_warn	directive
for	disabling	this	warning	altogether.

Testing	Special	Values	of	Nginx	Variables	in	Lua	

As	we	have	just	mentioned,	the	built-in	variable	$arg_XXX	takes	the	special	value	"not	found"	when	the	URL	argument	XXX	does	not
exist,	but	unfortunately,	it	is	not	easy	to	distinguish	it	from	the	empty	string	value	directly	in	the	Nginx	configuration	file,	for	example:

location	/test	{

				echo	"name:	[$arg_name]";

}

Here	we	intentionally	omit	the	URL	argument	name	in	our	request:

http://wiki.nginx.org/HttpCoreModule#.24arg_PARAMETER
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpRewriteModule
http://wiki.nginx.org/HttpRewriteModule#uninitialized_variable_warn
http://wiki.nginx.org/HttpCoreModule#.24arg_PARAMETER

$	curl	'http://localhost:8080/test'

name:	[]

We	can	see	that	we	are	still	getting	an	empty	string	value,	because	this	time	it	is	the	Nginx	"script	engine"	that	automatically	converts
the	"not	found"	special	value	to	an	empty	string	when	performing	variable	interpolation.

Then	how	can	we	test	the	special	value	"not	found"?	Or	in	other	words,	how	can	we	distinguish	it	from	normal	empty	string	values?
Obviously,	in	the	following	example,	the	URL	argument	name	does	take	an	ordinary	value,	which	is	a	true	empty	string:

$	curl	'http://localhost:8080/test?name='

name:	[]

But	we	cannot	really	differentiate	this	from	the	earlier	case	that	does	not	mention	the	name	argument	at	all.

Luckily,	we	can	easily	achieve	this	in	Lua	by	means	of	the	3rd-party	module	ngx_lua.	Please	look	at	the	following	example:

location	/test	{

				content_by_lua	'

								if	ngx.var.arg_name	==	nil	then

												ngx.say("name:	missing")

								else

												ngx.say("name:	[",	ngx.var.arg_name,	"]")

								end

				';

}

This	example	is	very	close	to	the	previous	one	in	terms	of	functionality.	We	use	the	content_by_lua	directive	from	the	ngx_lua	module
to	embed	a	small	piece	of	our	own	Lua	code	to	test	against	the	special	value	of	the	Nginx	variable	$arg_name.	When	$arg_name
takes	a	special	value	(either	"not	found"	or	"invalid"),	we	will	get	the	following	output	when	requesting	/foo:

$	curl	'http://localhost:8080/test'

name:	missing

This	is	our	first	time	meeting	the	ngx_lua	module,	which	deserves	a	brief	introduction.	This	module	embeds	the	Lua	language
interpreter	(or	LuaJIT's	Just-in-Time	compiler)	into	the	Nginx	core,	to	allow	Nginx	users	directly	run	their	own	Lua	programs	inside
the	server.	The	user	can	choose	to	insert	her	Lua	code	into	different	running	phases	of	the	server,	to	fulfill	different	requirements.	Such
Lua	code	are	either	specified	directly	as	literal	strings	in	the	Nginx	configuration	file,	or	reside	in	external	.lua	source	files	(or	Lua
binary	bytecode	files)	whose	paths	are	specified	in	the	Nginx	configuration.

Back	to	our	example,	we	cannot	directly	write	something	like	$arg_name	in	our	Lua	code.	Instead,	we	reference	Nginx	variables	in
Lua	by	means	of	the	ngx.var	API	provided	by	the	ngx_lua	module.	For	example,	to	reference	the	Nginx	variable	$VARIABLE	in
Lua,	we	just	write	ngx.var.VARIABLE.	When	the	Nginx	variable	$arg_name	takes	the	special	value	"not	found"	(or	"invalid"),
ngx.var.arg_name	is	evaluated	to	the	nil	value	in	the	Lua	world.	It	should	also	be	noting	that	we	use	the	Lua	function	ngx.say
to	print	out	the	response	body	contents,	which	is	functionally	equivalent	to	the	echo	directive	we	are	already	very	familiar	with.

If	we	provide	a	name	URI	argument	that	takes	an	empty	value	in	the	request,	the	output	is	now	very	different:

$	curl	'http://localhost:8080/test?name='

name:	[]

In	this	test,	the	value	of	the	Nginx	variable	$arg_name	is	a	true	empty	string,	neither	"not	found"	nor	"invalid".	So	in	Lua,	the
expression	ngx.var.arg_name	evaluates	to	the	Lua	empty	string	(""),	clearly	distinguished	from	the	Lua	nil	value	in	the
previous	test.

This	differentiation	is	important	in	certain	application	scenarios.	For	instance,	some	web	services	have	to	decide	whether	to	use	a
column	value	to	filter	the	data	set	by	checking	the	existence	of	the	corresponding	URI	argument.	For	these	serives,	when	the	name
URI	argument	is	absent,	the	whole	data	set	are	just	returned;	when	the	name	argument	takes	an	empty	value,	however,	only	those
records	that	take	an	empty	value	are	returned.

It	is	worth	mentioning	a	few	limitations	in	the	standard	$arg_XXX	variable.	Consider	using	the	following	request	to	test	/test	in	our
previous	example	using	Lua:

$	curl	'http://localhost:8080/test?name'

name:	missing

http://wiki.nginx.org/HttpLuaModule
http://wiki.nginx.org/HttpLuaModule#content_by_lua
http://wiki.nginx.org/HttpLuaModule
http://wiki.nginx.org/HttpLuaModule
http://wiki.nginx.org/HttpLuaModule
http://wiki.nginx.org/HttpLuuaModule#ngx.var.VARIABLE
http://wiki.nginx.org/HttpLuaModule#ngx.say
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpCoreModule#.24arg_PARAMETER

Now	the	$arg_name	variable	still	reads	the	"not	found"	special	value,	which	is	apparently	counter-intuitive.	Additionally,	when
multiple	URI	arguments	with	the	same	name	are	specified	in	the	request,	$arg_XXX	just	returns	the	first	value	of	the	argument,
discarding	other	values	silently:

$	curl	'http://localhost:8080/test?name=Tom&name=Jim&name=Bob'

name:	[Tom]

To	solve	these	problems,	we	can	use	the	Lua	function	ngx.req.get_uri_args	provided	by	the	ngx_lua	module	instead.

http://wiki.nginx.org/HttpCoreModule#.24arg_PARAMETER
http://wiki.nginx.org/HttpLuaModule#ngx.req.get_uri_args
http://wiki.nginx.org/HttpLuaModule

Nginx	Variables	(08)	
In	(02)	we	mentioned	that	another	category	of	builtin	variables	$cookie_XXX	are	like	$arg_XXX.	Similarly	when	there	exist	no
cookie	named	XXX,	its	corresponding	Nginx	variable	$cookie_XXX	has	non-value	"not	found".

location	/test	{

				content_by_lua	'

								if	ngx.var.cookie_user	==	nil	then

												ngx.say("cookie	user:	missing")

								else

												ngx.say("cookie	user:	[",	ngx.var.cookie_user,	"]")

								end

				';

}

The	curl	utility	offers	the	--cookie	name=value	option,	which	designates	name=value	as	a	cookie	of	its	request	(by	adding
the	Cookie	header).	Let's	test	a	few	cases	containing	cookies.

$	curl	--cookie	user=agentzh	'http://localhost:8080/test'

cookie	user:	[agentzh]

$	curl	--cookie	user=	'http://localhost:8080/test'

cookie	user:	[]

$	curl	'http://localhost:8080/test'

cookie	user:	missing

As	expected,	when	cookie	user	does	not	exist,	Lua	variable	ngx.var.	cookie_user	is	nil.	So	we	have	successfully
distinguished	the	case	with	empty	string	and	the	case	with	non-value.

A	nice	add-on	with	module	ngx_lua	is	when	lua	references	an	undeclared	variable	of	Nginx,	the	variable	is	nil	and	Nginx	will	not
aborts	it	loading	as	before.

location	/test	{

				content_by_lua	'

								ngx.say("$blah	=	",	ngx.var.blah)

				';

}

User	variable	$blah	is	never	declared	in	the	Nginx	configuration	nginx.	conf,	but	it	is	referenced	as	ngx.var.blah	in	Lua
code.	Nginx	can	be	started	still,	because	when	Nginx	loads	its	configuration,	Lua	code	is	only	compiled	but	not	executed,	So	Nginx
has	no	idea	a	variable	$blah	is	referenced.	When	lua	command	is	executed	in	run	time	by	command	content_by_lua,	the	lua	variable
is	evaluated	as	nil.	Module	ngx_lua	and	its	command	ngx.say	will	convert	Lua	nil	into	string	"nil"	before	it	is	printed,	so	the
output	will	be:

curl	'http://localhost:8080/test'

$blah	=	nil

This	is	indeed	what	we	want.

We	should	have	noticed	also,	when	command	content_by_lua	includes	$blah	in	its	parameter,	it	is	never	evaluated	as	"variable
interpolation"	does	(otherwise	Nginx	will	be	complaining	variable	$blah	is	not	declared).	This	is	because	command	content_by_lua
does	not	really	support	"variable	interpolation"	.	As	we	have	said	earlier	in	(01),	Nginx	command	does	not	necessarily	support
"variable	interpolation"	and	it	is	entirely	up	to	the	module	implementation.

It's	actually	difficult	to	return	an	"invalid"	non-value.	As	we	learnt	in	(07),	variables	which	are	declared	but	not	initialized	by	set	has
non-value	"invalid".	However,	as	soon	as	the	variable	is	devalued,	the	"get	handler"	is	executed	and	an	empty	string	is	computed	and
cached,	so	eventually	empty	string	is	returned,	not	the	"invalid"	non-value.	Following	lua	code	can	prove	this:

location	/foo	{

				content_by_lua	'

								if	ngx.var.foo	==	nil	then

http://wiki.nginx.org/HttpCoreModule#.24cookie_COOKIE
http://wiki.nginx.org/HttpCoreModule#.24arg_PARAMETER
http://wiki.nginx.org/HttpCoreModule#.24cookie_COOKIE
http://wiki.nginx.org/HttpLuaModule
http://wiki.nginx.org/HttpLuaModule#content_by_lua
http://wiki.nginx.org/HttpLuaModule
http://wiki.nginx.org/HttpLuaModule#ngx.say
http://wiki.nginx.org/HttpLuaModule#content_by_lua
http://wiki.nginx.org/HttpLuaModule#content_by_lua
http://wiki.nginx.org/HttpRewriteModule#set

												ngx.say("$foo	is	nil")

								else

												ngx.say("$foo	=	[",	ngx.var.foo,	"]")

								end

				';

}

location	/bar	{

				set	$foo	32;

				echo	"foo	=	[$foo]";

}

By	requesting	to	location	/foo	we	have:

$	curl	'http://localhost:8080/foo'

$foo	=	[]

As	we	can	tell,	when	Lua	references	uninitialized	Nginx	variable	$foo,	it	obtains	empty	string.

Last	not	the	least,	we	should	have	pointed	out,	although	Nginx	variable	can	have	only	strings	as	valid	value.	The	3rd	party	module
ngx_array_var	can	support	array	like	operations	for	Nginx	variable.Here	is	an	example:

location	/test	{

				array_split	","	$arg_names	to=$array;

				array_map	"[$array_it]"	$array;

				array_join	"	"	$array	to=$res;

				echo	$res;

}

Module	ngx_array_var	provides	commands	array_split,	array_map	and	array_join.	The	semantics	is	pretty	close	to	the
builtin	functions	split,	map	and	join	in	Perl	(other	languages	support	similar	functionalities	too).	Now	let's	check	what	happens
when	location	/test	is	requested:

$	curl	'http://localhost:8080/test?names=Tom,Jim,Bob'

[Tom]	[Jim]	[Bob]

Clearly	module	ngx_array_var	make	it	easier	to	handle	inputs	with	variable	length,	such	as	the	URL	parameter	name,	which	composes
of	multiple	comma	delimited	names.	Still	we	must	emphasize,	module	ngx_lua	is	a	much	better	choice	to	execute	this	kind	of
complicated	tasks,	usually	it	is	more	flexible	and	maintainable.

Till	now	the	tutorial	covers	the	Nginx	variable.	In	the	process	we	have	been	discussing	many	builtin	and	3rd	party	Nginx	modules,
these	modules	help	us	better	understand	features	and	internals	of	Nginx	variable	by	composing	various	mini	constructs.	Later	on	the
tutorial	will	be	covering	more	details	of	those	modules.

With	these	examples,	we	should	understand	that	Nginx	variable	plays	a	key	role	in	the	Nginx	mini	language:	variables	are	the	ways
and	means	Nginx	communicate	internally,	they	contain	all	the	needed	information	(including	the	request	information)	and	they	are	the
cornerstone	elements	which	bridge	every	other	Nginx	modules.	Nginx	variables	are	everywhere	in	the	coming	tutorials,	understand
them	is	absolutely	necessary.

In	the	coming	tutorial	"Nginx	Directive	Execution	Order",	we	will	be	discussing	in	detail	the	Nginx	execution	ordering	and	the	phases
every	request	traverses.	It'	s	indispensable	to	understand	them	since	for	the	Nginx	mini	language,	the	ordering	of	writing	can	be
dramatically	different	from	the	ordering	of	executing	in	the	timeline.	It	usually	confuses	many	Nginx	users.

http://wiki.nginx.org/HttpArrayVarModule
http://wiki.nginx.org/HttpArrayVarModule
http://wiki.nginx.org/HttpArrayVarModule
http://wiki.nginx.org/HttpLuaModule

Nginx	directive	execution	order	(01)	
When	there	are	multiple	Nginx	module	commands	in	a	location	directive,	the	execution	order	can	be	different	from	what	you
expect.	Busy	Nginx	users	who	attempt	to	configure	Nginx	by	"trial	and	error"	may	be	very	confused	by	this	behavior.	This	series	is	to
uncover	the	mysteries	and	help	you	better	understand	the	execution	ordering	behind	the	scenes.

We	start	with	a	confused	example:

?	location	/test	{

?					set	$a	32;

?					echo	$a;

?

?					set	$a	56;

?					echo	$a;

?	}

Clearly,	we'd	expect	to	output	32,	followed	by	56.	Because	variable	$a	has	been	reset	after	command	echo	"is	executed".	Really?	the
reality	is:

$	curl	'http://localhost:8080/test'

56

56

Wow,	statement	set	$a	56	must	have	had	been	executed	before	the	first	echo	$a	command,	but	why?	Is	it	a	Nginx	bug?

No,	this	is	not	an	Nginx	bug.	When	Nginx	handles	every	request,	the	execution	follows	a	few	predefined	phases.

There	can	be	altogether	11	phases	when	Nginx	handles	a	request,	let's	start	with	three	most	common	ones:	rewrite,	access	and
content	(The	other	phases	will	be	addressed	later.)

Usually	an	Nginx	module	and	its	commands	register	their	execution	in	only	one	of	those	phases.	For	example	command	set	runs	in
phase	rewrite,	and	command	echo	runs	in	phase	content.	Since	phase	rewrite	occurs	before	phase	content	for	every
request	processing,	its	commands	are	executed	earlier	as	well.	Therefore,	command	set	always	gets	executed	before	command	echo
within	one	location	directive,	regardless	of	their	statement	ordering	in	the	configuration.

Back	to	our	example:

set	$a	32;

echo	$a;

set	$a	56;

echo	$a;

The	actual	execution	ordering	is:

set	$a	32;

set	$a	56;

echo	$a;

echo	$a;

It's	clear	now,	two	commands	set	are	executed	in	phase	rewrite,	two	commands	echo	are	executed	afterwards	in	phase	content.
Commands	in	different	phases	cannot	be	executed	back	and	forth.

To	prove	this,	we	can	enable	Nginx's	"debug	log".

If	you	have	not	worked	with	Nginx	"debug	log"	before,	here	is	a	brief	introduction.	The	"debug	log"	is	disabled	by	default	because
performance	is	degraded	when	it	is	enabled.	To	enable	"debug	log"	you	must	reconfigure	and	recompile	Nginx,	and	set	the	--with-
debug	option	for	the	package's	./configure	script.	When	building	under	Linux	or	Mac	OS	X	from	source:

tar	xvf	nginx-1.0.10.tar.gz

cd	nginx-1.0.10/

./configure	--with-debug

make

http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpEchoModule#echo

sudo	make	install

In	case	the	package	ngx_openresty	is	used.	The	option	--with-debug	can	be	used	with	its	./configure	script	as	well.

After	we	rebuild	the	Nginx	debug	binary	with	--with-debug	option,	we	still	need	to	explicitly	use	the	debug	log	level	(it's	the
lowest	level)	for	command	error_log,	in	Nginx	configuration:

error_log	logs/error.log	debug;

debug,	the	second	parameter	of	command	error_log	is	crucial.	Its	first	parameter	is	error	log's	file	path,	logs/error.log.
Certainly	we	can	use	another	file	path	but	do	remember	the	location	because	we	need	to	check	its	content	right	away.

Now	let's	restart	Nginx	(Attention,	it's	not	enough	to	reload	Nginx.	It	needs	to	be	killed	and	restarted	because	we've	updated	the	Nginx
binary).	Then	we	can	send	the	request	again:

$	curl	'http://localhost:8080/test'

56

56

It's	time	to	check	Nginx's	error	log,	which	is	becoming	a	lot	more	verbose	(more	than	700	lines	for	the	request	in	my	setup).	So	let's
apply	the	grep	command	to	filter	what	we	would	be	interested:

grep	-E	'http	(output	filter|script	(set|value))'	logs/error.log

It's	approximately	like	below	(for	clearness,	I've	edited	the	grep	output	and	remove	its	timestamp	etc)	:

[debug]	5363#0:	*1	http	script	value:	"32"

[debug]	5363#0:	*1	http	script	set	$a

[debug]	5363#0:	*1	http	script	value:	"56"

[debug]	5363#0:	*1	http	script	set	$a

[debug]	5363#0:	*1	http	output	filter	"/test?"

[debug]	5363#0:	*1	http	output	filter	"/test?"

[debug]	5363#0:	*1	http	output	filter	"/test?"

It	barely	makes	any	senses,	does	it?	So	let	me	interpret.	Command	set	dumps	two	lines	of	debug	info	which	start	with	http	script,
the	first	line	tells	the	value	which	command	set	has	possessed,	and	the	second	line	being	the	variable	name	it	will	be	given	to,	so	for
the	leading	filtered	log:

[debug]	5363#0:	*1	http	script	value:	"32"

[debug]	5363#0:	*1	http	script	set	$a

These	two	lines	are	generated	by	this	statement:

set	$a	32;

And	for	the	following	filtered	log:

[debug]	5363#0:	*1	http	script	value:	"56"

[debug]	5363#0:	*1	http	script	set	$a

They	are	generated	by	this	statement:

set	$a	56;

Besides,	whenever	Nginx	outputs	its	response,	its	"output	filter"	will	be	executed,	our	favorite	command	echo	is	no	exception.	As	soon
as	Nginx's	"output	filter"	is	executed,	it	generates	debug	log	like	below:

[debug]	5363#0:	*1	http	output	filter	"/test?"

Of	course	the	debug	log	might	not	have	"/test?",	since	this	part	corresponds	to	the	actual	request	URI.	By	putting	everything
together,	we	can	finally	conclude	those	two	commands	set	are	indeed	executed	before	the	other	two	commands	echo.

Considerate	readers	must	have	noticed	that	there	are	three	lines	of	http	output	filter	debug	log	but	we	were	having	only	two
output	commands	echo.	In	fact,	only	the	first	two	debug	logs	are	generated	by	the	two	echo	statements.	The	last	debug	log	is	added	by
module	ngx_echo	because	it	needs	to	flag	the	end	of	output.	The	flag	operation	itself	causes	Nginx's	"output	filter"	to	be	executed
again.	Many	modules	including	ngx_proxy	has	similar	behavior,	when	they	need	to	give	output	data.

http://openresty.org
http://wiki.nginx.org/CoreModule#error_log
http://wiki.nginx.org/CoreModule#error_log
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpEchoModule
http://wiki.nginx.org/HttpProxyModule

All	right,	there	are	no	surprises	with	those	duplicated	56	outputs.	We	are	not	given	a	chance	to	execute	echo	in	front	of	the	second	set
command.	Luckily,	we	can	still	achieve	this	with	a	few	techniques:

location	/test	{

				set	$a	32;

				set	$saved_a	$a;

				set	$a	56;

				echo	$saved_a;

				echo	$a;

}

Now	we	have	what	we	have	wanted:

$	curl	'http://localhost:8080/test'

32

56

With	the	help	of	another	user	variable	$saved_a,	the	value	of	$a	is	saved	before	it	is	overwritten.	Be	careful,	the	execution	order	of
multiple	set	commands	are	ensured	to	be	like	their	order	of	writing	by	module	.	Similarly,	module	ngx_echo	ensures	multiple	echo
commands	get	executed	in	the	same	order	of	their	writing.

If	we	recall	examples	in	Nginx	Variables,	this	technique	has	been	applied	extensively.	It	bypasses	the	execution	ordering	difficulties
introduced	by	Nginx	phased	processing.

You	might	need	to	ask	:	"how	would	I	know	the	phase	a	Nginx	command	belongs	to	?"	Indeed,	the	answer	is	RTFD.	(Surely	advanced
developers	can	examine	the	C	source	code	directly).	Many	module	marks	explicitly	its	applicable	phase	in	the	module's
documentation,	such	as	command	echo	writes	below	in	its	documentation:

phase:	content

It	says	the	command	is	executed	in	phase	content.	If	you	encounters	a	module	which	misses	the	applicable	phase	in	the	document,
you	can	write	to	its	authors	right	away	and	ask	for	it.	However,	we	shall	be	reminded,	not	every	command	has	an	applicable	phase.
Examples	are	command	geo	introduced	in	Nginx	Variables	(01)	and	command	map	introduced	in	Nginx	Variables	(04).	These
commands,	who	have	no	explicit	applicable	phase,	are	declarative	and	unrelated	to	the	conception	of	execution	ordering.	Igor	Sysoev,
the	author	of	Nginx,	has	made	the	statements	a	few	times	publicly,	that	Nginx	mini	language	in	its	configuration	is	"declarative"	not
"procedural".

http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpEchoModule
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpGeoModule#geo
http://wiki.nginx.org/HttpMapModule#map

Nginx	directive	execution	order	(02)	
We've	just	learnt,	all	set	commands	within	location	are	executed	in	rewrite	phase.	In	fact,	almost	all	commands	implemented	by
module	rewrite	are	executed	in	rewrite	phase	under	the	specific	context.	Commad	rewrite	introduced	in	Nginx	Variables	(02)	is
one	of	them.	However,	we	shall	point	out	that	when	these	commands	are	found	in	server	directive,	they	will	be	executed	in	an
earlier	phase	we've	not	addressed:	the	server	rewrite	phase.

Command	set_unescape_uri,	introduced	in	Nginx	Variables	(02)	is	also	executed	in	rewrite	phase.	Actually,	commands
implemented	by	module	ngx_set_misc	can	mix	with	commands	implemented	by	module	ngx_rewrite	and	the	execution	ordering	is
ensured.	Let's	check	an	example:

location	/test	{

				set	$a	"hello%20world";

				set_unescape_uri	$b	$a;

				set	$c	"$b!";

				echo	$c;

}

By	sending	a	request	accordingly	we	have:

$	curl	'http://localhost:8080/test'

hello	world!

Apparently,	the	set_unescape_uri	command	and	its	neighboring	set	commands	are	all	executed	in	the	order	of	their	writing.

To	further	demonstrate	our	assertion,	we	check	again	Nginx	"debug	log"	(in	case	it's	unclear	for	you	how	to	check	"debug	log",	please
reference	steps	found	in	(01)).

grep	-E	'http	script	(value|copy|set)'	logs/error.log

The	debug	logs	are	filtered	as:

[debug]	11167#0:	*1	http	script	value:	"hello%20world"

[debug]	11167#0:	*1	http	script	set	$a

[debug]	11167#0:	*1	http	script	value	(post	filter):	"hello	world"

[debug]	11167#0:	*1	http	script	set	$b

[debug]	11167#0:	*1	http	script	copy:	"!"

[debug]	11167#0:	*1	http	script	set	$c

The	leading	two	lines:

[debug]	11167#0:	*1	http	script	value:	"hello%20world"

[debug]	11167#0:	*1	http	script	set	$a

They	correspond	to	the	command

set	$a	"hello%20world";

The	following	two	lines:

[debug]	11167#0:	*1	http	script	value	(post	filter):	"hello	world"

[debug]	11167#0:	*1	http	script	set	$b

They	are	generated	by	command

set_unescape_uri	$b	$a;

There	are	minor	differences	in	the	first	line,	if	we	compare	to	the	logs	generated	by	command	set:	the	"(post	filter)"	addition.
In	the	end	of	the	line,	URL	decoding	has	successfully	executed	as	we	wish.	"hello%20world"	is	decoded	as	"hello	world".

The	last	two	lines	of	debug	log:

[debug]	11167#0:	*1	http	script	copy:	"!"

http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpRewriteModule#rewrite
http://wiki.nginx.org/HttpSetMiscModule#set_unescape_uri
http://wiki.nginx.org/HttpSetMiscModule
http://wiki.nginx.org/HttpRewriteModule
http://wiki.nginx.org/HttpSetMiscModule#set_unescape_uri
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpRewriteModule#set

[debug]	11167#0:	*1	http	script	set	$c

They	are	generated	by	the	last	set	command

set	$c	"$b!";

As	you	might	have	noticed,	since	"variable	interpolation"	is	evaluated	when	variable	$c	is	declared	and	initialized,	the	debug	log	starts
with	http	script	copy.	In	the	end	of	the	log	it	is	the	string	constant	"!"	to	be	concatenated.

With	the	log	information,	it's	fairly	easy	to	tell	the	command	execution	ordering:

set	$a	"hello%20world";

set_unescape_uri	$b	$a;

set	$c	"$b!";

It	is	a	perfect	match	to	the	statements	ordering.

Just	like	the	commands	implemented	in	module	ngx_set_misc,	command	set_by_lua	implemented	in	3rd	party	module	ngx_lua,	can
mix	with	commands	of	module	ngx_rewrite	as	well.	As	introduced	in	Nginx	Variables	(07),	command	set_by_lua	supports
computation	with	given	Lua	code,	and	assigns	the	computed	result	to	a	Nginx	variable.	As	command	set	does,	command	set_by_lua
declares	Nginx	variable	before	initialization	if	the	variable	does	not	exist.

Let's	check	a	mixed	example	which	comprises	command	set_by_lua	and	set:

location	/test	{

				set	$a	32;

				set	$b	56;

				set_by_lua	$c	"return	ngx.var.a	+	ngx.var.b";

				set	$equation	"$a	+	$b	=	$c";

				echo	$equation;

}

Variable	$a	and	$b	are	initialized	with	numerical	value	32	and	56	respectively,	then	command	set_by_lua	is	used	together	with	given
Lua	code	to	compute	the	sum	of	$a	and	$b.	Variable	$c	is	initialized	with	the	computed	value.	Finally,	variables	$a,	$b	and	$c	are
concatenated	by	"variable	interpolation"	and	assigns	the	result	to	variable	$equation,	which	is	printed	by	command	echo.

We	shall	pay	attention	to	a	few	points	in	the	example:	Firstly	Nginx	variable	$VARIABLE	is	referenced	as	ngx.var.VARIABLE	in	Lua
code.	Secondly,	since	Nginx	variables	are	strings,	the	value	of	variable	ngx.var.a	and	ngx.var.b	are	actually	strings	"32"	and
"56",	however	they	are	automatically	converted	to	numerical	values	by	Lua	in	the	addition	operation.	Thirdly	Lua	code	returns	to
Nginx	variable	$c	the	computed	sum	value	by	statement	return.	Finally	when	Lua	code	returns,	it	actually	converts	the	numerical
value	back	to	string.	(because	string	is	the	only	valid	value	for	Nginx	variable)

The	actual	output	meets	our	expectation:

$	curl	'http://localhost:8080/test'

32	+	56	=	88

This	in	fact	asserts	that	command	set_by_lua	can	mix	with	commands	implemented	by	module	ngx_rewrite,	such	as	set.

Many	other	3rd	party	modules	support	the	mix	with	module	ngx_rewrite	as	well.	The	examples	include	module	ngx_array_var,
discussed	in	Nginx	Variables	(08)	and	module	ngx_encrypted_session,	which	encrypts	sessions.	The	latter	will	be	studied	in	detail
shortly.

Since	builtin	module	ngx_rewrite	is	virtually	indispensable,	it's	a	great	advantage	for	the	3rd	party	module	has	the	caliber	of	being
mixed	with.	Truth	is,	all	of	those	3rd	party	modules	have	adopted	a	special	technique,	which	allows	the	"injection"	of	their	execution
into	commands	of	module	rewrite	(with	the	help	of	a	3rd	party	module	ngx_devel_kit	developed	by	Marcus	Clyne).	For	the	rest
regular	3rd	party	modules,	which	also	register	their	execution	in	phase	rewrite,	their	commands	are	executed	separately	from
module	ngx_rewrite	in	runtime.	In	fact,	it's	hardly	accurate	to	tell	the	commands	execution	ordering	in	between	different	modules
(strictly	speaking	they	are	usually	executed	in	the	order	of	loading,	but	exception	does	exist).	For	example	both	modules,	A	and	B
register	their	commands	to	be	executed	in	phase	rewrite,	then	it	is	either	the	case	in	which	commands	of	A	are	executed	followed	by
B	or	the	other	complete	way	around.	Unless	it	is	explicitly	documented,	we	cannot	rely	on	the	uncertain	ordering	in	our	configurations.

http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpSetMiscModule
http://wiki.nginx.org/HttpLuaModule#set_by_lua
http://wiki.nginx.org/HttpLuaModule
http://wiki.nginx.org/HttpRewriteModule
http://wiki.nginx.org/HttpLuaModule#set_by_lua
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpLuaModule#set_by_lua
http://wiki.nginx.org/HttpLuaModule#set_by_lua
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpLuaModule#set_by_lua
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpLuaModule#ngx.var.VARIABLE
http://wiki.nginx.org/HttpLuaModule#set_by_lua
http://wiki.nginx.org/HttpRewriteModule
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpRewriteModule
http://wiki.nginx.org/HttpArrayVarModule
http://wiki.nginx.org/HttpEncryptedSessionModule
http://wiki.nginx.org/HttpRewriteModule
https://github.com/simpl/ngx_devel_kit
http://wiki.nginx.org/HttpRewriteModule

Nginx	directive	execution	order	(03)	
As	discussed	earlier,	unless	special	techniques	are	utilized	as	module	ngx_set_misc	does,	a	module	can	not	mix	its	commands	with
ngx_rewrite,	and	expects	the	correct	execution	order.	Even	if	the	commands	are	registered	in	the	rewrite	phase	as	well.	We	can
demonstrate	with	some	examples.

3rd	party	module	ngx_headers_more	provides	a	few	commands,	which	deal	with	the	current	request	header	and	response	header.	One
of	them	is	more_set_input_header.	The	command	can	modify	a	given	request	header	in	rewrite	phase	(or	add	the	specific	header	if
it's	not	available	in	current	request).	As	described	in	its	documentation,	the	command	always	executes	in	the	end	of	rewrite	phase:

phase:	rewrite	tail

Being	terse	though,	rewrite	tail	means	the	end	of	phase	rewrite.

Since	it	executes	in	the	end	of	phase	rewrite,	the	implication	is	its	execution	is	always	after	the	commands	implemented	in	module
ngx_rewrite.	Even	if	it	is	written	at	the	very	beginning:

?	location	/test	{

?					set	$value	dog;

?					more_set_input_headers	"X-Species:	$value";

?					set	$value	cat;

?

?					echo	"X-Species:	$http_x_species";

?	}

As	briefly	introduced	in	Nginx	Variables	(02),	Builtin	variable	$http_XXX	has	the	header	XXX	for	the	current	request.	We	must	be
careful	though,	variable	<$http_XXX>	matches	to	the	normalized	request	header,	i.e.	it	lower	cases	capital	letters	and	turns	minus	-
into	underscore	_	for	the	request	header	names.	Therefore	variable	$http_x_species	can	successfully	catches	the	request	header
X-Species,	which	is	declared	by	command	more_set_input_header.

Because	of	the	statement	ordering,	we	might	have	mistakenly	concluded	header	X-Species	has	the	value	dog	when	/test	is
requested.	But	the	actual	result	is	different:

$	curl	'http://localhost:8080/test'

X-Species:	cat

Clearly,	statement	set	$value	cat	is	executed	earlier	than	more_set_input_headers,	although	it	is	written	afterwards.

This	example	tells	us	that	commands	of	different	modules	are	executed	independently	from	each	other,	even	if	they	are	all	registered	in
the	same	processing	phase.	(unless	it	is	implemented	as	module	ngx_set_misc,	whose	commands	are	specifically	tuned	with	module
ngx_rewrite).	In	other	words,	every	processing	phase	is	further	divided	into	sub-phases	by	Nginx	modules.

Similar	to	more_set_input_headers,	command	rewrite_by_lua	provided	by	3rd	party	module	ngx_lua	execute	in	the	end	of	rewrite
phase	as	well.	We	can	verify	this:

?	location	/test	{

?					set	$a	1;

?					rewrite_by_lua	"ngx.var.a	=	ngx.var.a	+	1";

?					set	$a	56;

?

?					echo	$a;

?	}

By	using	Lua	code	specified	by	command	rewrite_by_lua	Nginx	variable	$a	is	incremented	by	1.We	might	have	expected	the	result	be
56	if	we	are	looking	at	the	writing	sequence.The	actual	result	is	57	because	command	is	always	executed	after	all	the	set	statements.

$	curl	'http://localhost:8080/test'

57

Admittedly	command	rewrite_by_lua	has	different	behavior	than	command	set_by_lua,	which	is	discussed	in	(02).

Out	of	sheer	curiosity,	we	shall	ask	immediately	that	what	would	be	execution	ordering	in	between	more_set_input_headers	and
rewrite_by_lua,	since	they	both	ride	on	rewrite	tail?	The	answer	is	:	undefined.	We	must	avoid	a	configuration	which	relies	on	their

http://wiki.nginx.org/HttpSetMiscModule
http://wiki.nginx.org/HttpRewriteModule
http://wiki.nginx.org/HttpHeadersMoreModule
http://wiki.nginx.org/HttpHeadersMoreModule#more_set_input_header
http://wiki.nginx.org/HttpCoreModule#.24http_HEADER
http://wiki.nginx.org/HttpHeadersMoreModule#more_set_input_header
http://wiki.nginx.org/HttpHeadersMoreModule#more_set_input_headers
http://wiki.nginx.org/HttpSetMiscModule
http://wiki.nginx.org/HttpRewriteModule
http://wiki.nginx.org/HttpHeadersMoreModule#more_set_input_headers
http://wiki.nginx.org/HttpLuaModule#rewrite_by_lua
http://wiki.nginx.org/HttpLuaModule
http://wiki.nginx.org/HttpLuaModule#rewrite_by_lua
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpLuaModule#rewrite_by_lua
http://wiki.nginx.org/HttpLuaModule#set_by_lua
http://wiki.nginx.org/HttpHeadersMoreModule#more_set_input_headers
http://wiki.nginx.org/HttpLuaModule#rewrite_by_lua

execution	orders.

Nginx	phase	rewrite	is	a	rather	early	processing	phase.	Usually	commands	registered	in	this	phase	execute	various	rewrite	tasks	on
the	request	(for	example	rewrite	the	URL	or	the	URL	parameters),	the	commands	might	also	declare	and	initialize	Nginx	variables
which	are	needed	in	the	subsequent	handling.	Certainly,	one	cannot	forbid	others	to	complicate	themselves	by	checking	the	request
body,	or	visit	a	database	etc.	After	all,	command	like	rewrite_by_lua	offers	the	caliber	to	stuff	in	any	potentially	mind	twisted	Lua
code.

After	phase	rewrite,	Nginx	has	another	phase	called	access.	The	commands	provided	by	3rd	party	module	ngx_auth_request,
which	is	discussed	in	Nginx	Variables	(05),	execute	in	phase	access.	Commands	registered	in	access	phase	mostly	carry	out	ACL
functionalities,	such	as	guarding	user	clearance,	checking	user	origins,	examining	source	IP	validity	etc.

For	example	command	allow	and	deny	provided	by	builtin	module	ngx_access	can	control	which	IP	addresses	have	the	privileges	to
visit,	or	which	IP	addresses	are	rejected:

location	/hello	{

				allow	127.0.0.1;

				deny	all;

				echo	"hello	world";

}

Location	/hello	allows	visit	from	localhost	(IP	address	127.0.0.1)	and	reject	requests	from	all	other	IP	addresses	(returns	http
error	403)	The	rules	defined	by	ngx_access	commands	are	asserted	in	the	writing	sequence.	Once	one	rule	is	matched,	the	assertion
stops	and	all	the	rest	allow	or	deny	commands	are	ignored.	If	no	rule	is	matched,	handling	continues	in	the	following	statements.	If	the
matched	rule	is	deny,	handing	is	aborted	and	error	403	is	returned	immediately.	In	our	example,	request	issued	from	localhost	matches
to	the	rule	allow	127.0.0.1	and	handing	continues	to	the	other	statements,	however	request	issued	from	every	other	IP	addresses
will	match	rule	deny	all	handling	is	therefore	aborted	and	error	403	is	returned.

We	can	give	it	a	test,	by	sending	request	from	localhost:

$	curl	'http://localhost:8080/hello'

hello	world

If	request	is	sent	from	another	machine	(suppose	Nginx	runs	on	IP	192.168.1.101)	we	have:

$	curl	'http://192.168.1.101:8080/hello'

<html>

<head><title>403	Forbidden</title></head>

<body	bgcolor="white">

<center><h1>403	Forbidden</h1></center>

<hr><center>nginx</center>

</body>

</html>

By	the	way,	module	ngx_access	supports	the	"CIDR	notation"	to	designate	a	sub-network.	For	example	169.200.179.4/24
represents	the	sub-network	which	has	the	routing	prefix	169.200.179.0	(or	subnet	mask	255.255.	255.0)

Because	commands	of	module	ngx_access	execute	in	access	phase,	and	phase	access	is	behind	rewrite	phase.	So	for	those
commands	we	have	been	discussing,	regardless	of	the	writing	order	they	always	execute	in	rewrite	phase,	which	is	earlier	than
allow	or	deny.	Keep	this	in	mind,	we	shall	try	our	best	to	keep	the	writing	and	execution	order	consistent.

http://wiki.nginx.org/HttpLuaModule#rewrite_by_lua
http://mdounin.ru/hg/ngx_http_auth_request_module/
http://wiki.nginx.org/HttpAccessModule#allow
http://wiki.nginx.org/HttpAccessModule#deny
http://wiki.nginx.org/HttpAccessModule
http://wiki.nginx.org/HttpAccessModule
http://wiki.nginx.org/HttpAccessModule#allow
http://wiki.nginx.org/HttpAccessModule#deny
http://wiki.nginx.org/HttpAccessModule#deny
http://wiki.nginx.org/HttpAccessModule
http://wiki.nginx.org/HttpAccessModule
http://wiki.nginx.org/HttpAccessModule#allow
http://wiki.nginx.org/HttpAccessModule#deny

Nginx	directive	execution	order	(04)	
Module	ngx_lua	implements	another	command	access_by_lua.	The	command	allows	lua	code	to	be	executed	in	the	end	of	access
phase,	which	means	it	always	executes	after	allow	and	deny	even	they	belong	to	the	same	phase.	In	many	cases,	we	examine	the
request'	s	source	IP	address	with	ngx_access,	and	use	command	access_by_lua	to	execute	more	complicated	verifications	with	Lua.
For	example	by	querying	a	database	or	other	backend	services,	the	current	user's	identity	and	privileges	are	examined.

We	can	check	a	simple	example,	which	uses	command	access_by_lua	to	implement	the	IP	filtering	functionality	of	module	ngx_access

location	/hello	{

				access_by_lua	'

								if	ngx.var.remote_addr	==	"127.0.0.1"	then

												return

								end

								ngx.exit(403)

				';

				echo	"hello	world";

}

Nginx's	builtin	variable	$remote_addr	is	referenced	in	Lua	to	get	the	client's	IP	address.	Then	Lua	statement	if	is	used	to	determine	if
the	address	equals	127.0.0.1.	Lua	returns	if	it	equals,	Nginx	thus	continues	the	subsequent	handling	(including	the	content	phase
where	command	echo	applies	to).	If	it	is	not	the	localhost	address,	current	handling	is	aborted	by	using	ngx_lua	module's	Lua	function
ngx.exit	Client	gets	a	http	error	403.

The	example	is	equivalent	to	the	other	example	using	ngx_access	module	in	terms	of	functionality,	which	was	discussed	in	(03):

location	/hello	{

				allow	127.0.0.1;

				deny	all;

				echo	"hello	world";

}

However	we	shall	point	out,	performance	wise	the	two	still	have	differences.	Module	ngx_access	performs	better	because	it	is
specifically	implemented	as	a	Nginx	module	in	C.

We	can	measure	the	performance	differences	of	the	two.	After	all,	performance	is	what	we	are	after	by	using	Nginx.	On	the	other	hand,
it's	absolutely	necessary	to	be	equipped	with	measuring	techniques,	because	only	actual	data	distinguishes	amateurs	and	professionals.
In	fact,	both	ngx_lua	and	ngx_access	perform	pretty	good	for	IP	filtering.	To	minimize	measuring	errors	we	could	measure	directly	the
elapsed	time	of	access	phase.	Traditionally,	this	means	hacking	Nginx	source	code	with	timing	code	and	statistical	code,	or
recompile	Nginx	binary	so	that	it	can	be	monitored	by	specific	profiling	tools	like	GNU	gprof.

We	are	lucky,	because	current	releases	of	Solaris,	Mac	OSX	or	FreeBSD	offer	a	system	utility	dtrace,	which	allows	micro
monitoring	of	user	process	in	terms	of	performance	(and	functionality	as	well).	The	tool	spares	us	from	hacking	source	code	or
recompilation	with	profiling.	Let's	demonstrate	the	measuring	scenario	on	the	MacBook	Air	because	dtrace	is	available	since	Mac
OS	X	10.5

First,	open	the	Terminal	application	of	Mac	OSX,	change	to	your	preferable	path	and	create	a	file	named	as	nginx-access-
time.d,	edit	the	file	with	following	content:

#!/usr/bin/env	dtrace	-s

pid$1::ngx_http_handler:entry

{

				elapsed	=	0;

}

pid$1::ngx_http_core_access_phase:entry

{

				begin	=	timestamp;

http://wiki.nginx.org/HttpLuaModule
http://wiki.nginx.org/HttpLuaModule#access_by_lua
http://wiki.nginx.org/HttpAccessModule#allow
http://wiki.nginx.org/HttpAccessModule#deny
http://wiki.nginx.org/HttpAccessModule
http://wiki.nginx.org/HttpLuaModule#access_by_lua
http://wiki.nginx.org/HttpLuaModule#access_by_lua
http://wiki.nginx.org/HttpAccessModule
http://wiki.nginx.org/HttpCoreModule#.24remote_addr
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpLuaModule
http://wiki.nginx.org/HttpLuaModule#ngx.exit
http://wiki.nginx.org/HttpAccessModule
http://wiki.nginx.org/HttpAccessModule
http://wiki.nginx.org/HttpLuaModule
http://wiki.nginx.org/HttpAccessModule

}

pid$1::ngx_http_core_access_phase:return

/begin	>	0/

{

				elapsed	+=	timestamp	-	begin;

				begin	=	0;

}

pid$1::ngx_http_finalize_request:return

/elapsed	>	0/

{

				@elapsed	=	avg(elapsed);

				elapsed	=	0;

}

Save	the	file	and	make	it	executable.

$	chmod	+x	./nginx-access-time.d

The	.d	file	actually	contains	code	written	in	D	language	offered	by	utility	dtrace	(attention,	the	D	language	is	not	the	other	D
language,	which	is	advocated	by	Walter	Bright	for	a	better	C++).	So	far	we	cannot	really	explain	in	detail	the	code	because	it	requires
a	thorough	understanding	of	Nginx	internals.	Anyway	we	shall	be	clear	of	the	code's	purpose:	measure	requests	being	handled	by
specific	Nginx	worker	process	and	calculate	the	average	time	elapsed	in	access	phase.

Now	we	can	get	the	D	script	running.	The	script	takes	a	command	line	parameter,	which	is	the	process	id	(pid)	of	Nginx	worker.	Since
Nginx	supports	multiple	worker	processes	and	the	requests	can	be	randomly	handled	by	anyone	of	them,	we'd	like	to	configure	Nginx
in	its	configuration	nginx.conf	so	that	only	one	worker	is	requested.

worker_processes	1;

After	Nginx	binary	is	restarted,	the	worker	process	id	can	be	obtained	by	command	ps.

$	ps	ax|grep	nginx|grep	worker|grep	-v	grep

Typically	we	have:

10975			??		S						0:34.28	nginx:	worker	process

10975	is	my	Nginx	worker	pid.	In	case	you	have	multiple	lines,	you	must	have	started	multiple	Nginx	server	instances	or	the	current
Nginx	server	has	started	multiple	worker	processes.

Then	as	root,	script	nginx-access-time.d	is	executed	with	the	worker	pid

$	sudo	./nginx-access-time.d	10975

We	shall	have	one	output	message	if	everything	goes	OK.

dtrace:	script	'./nginx-access-time.d'	matched	4	probes

The	message	says	our	D	script	has	successfully	deployed	4	probes	on	the	target	process.	Then	the	script	is	ready	to	trace	process
10975	constantly.

Let's	open	another	Terminal,	and	send	multiple	requests	with	curl	to	our	monitored	process

$	curl	'http://localhost:8080/hello'

hello	world

$	curl	'http://localhost:8080/hello'

hello	world

Back	to	our	Terminal	where	D	script	is	running,	press	keys	Ctrl-C	to	interrupt	it.	When	the	script	bails	out	it	prints	on	console	the
statistical	result.	For	example	my	console	has	following	result:

$	sudo	./nginx-access-time.d	10975

dtrace:	script	'./nginx-access-time.d'	matched	4	probes

^C

							19219

The	final	19219	is	the	average	time	elapsed	in	access	phase	in	nano	seconds	(1	second	=	1000x1000x1000	nano	seconds)

Done	with	the	steps.	We	can	run	the	nginx-access-time.d	script	to	calculate	average	elapsed	time	in	phase	access	for	three
different	Nginx	setups	respectively.	They	are	IP	filtering	with	module	ngx_access,	IP	filtering	with	command	access_by_lua,	and
finally	no	filtering	for	access	phase.	The	last	result	helps	eliminate	the	side	effect	caused	by	probes	or	other	"systematic	errors".
Besides,	we	can	use	traffic	loader	tools	such	as	ab	to	sends	half	a	million	requests	to	minimize	"random	errors",	as	below:

$	ab	-k	-c1	-n100000	'http://127.0.0.1:8080/hello'

Therefore	the	statistical	result	of	D	script	is	as	close	as	possible	to	the	"actual"	time.

In	the	Mac	OSX,	a	typical	run	has	following	results:

ngx_access																			18146

access_by_lua																35011

no	filtering																	15887

We	minus	the	last	value	from	the	former	two:

ngx_access																2259

access_by_lua												19124

Well,	module	ngx_access	out	performs	command	access_by_lua	by	a	magnitude,	as	we	might	have	expected.	Still	the	absolute
difference	is	tiny.	For	the	Intel	Core2Due	1.86	GHz	CPU	of	mine,	there	is	only	a	few	micro	seconds.

In	fact	the	access_by_lua	example	can	be	further	optimized	using	builtin	variable	$binary_remote_addr.	This	variable	has	the	IP
address	in	binary	form	whereas	variable	$remote_addr	has	the	address	in	a	longer	string	format.	Shorter	address	can	be	compared
quicker	when	Lua	executes	its	string	operations.

Be	careful,	if	"debug	log"	is	enabled	as	introduced	in	(01)	the	computed	elapsed	time	will	increase	dramatically,	because	"debug	log"
has	a	huge	overhead.

http://wiki.nginx.org/HttpAccessModule
http://wiki.nginx.org/HttpLuaModule#access_by_lua
http://wiki.nginx.org/HttpAccessModule
http://wiki.nginx.org/HttpLuaModule#access_by_lua
http://wiki.nginx.org/HttpLuaModule#access_by_lua
http://wiki.nginx.org/HttpCoreModule#.24binary_remote_addr
http://wiki.nginx.org/HttpCoreModule#.24remote_addr

Nginx	directive	execution	order	(05)	
content	is	by	all	means	the	most	significant	phase	in	Nginx's	request	handling,	because	commands	running	in	the	phase	have	the
responsibility	to	generate	"content"	and	output	HTTP	response.	Because	of	its	importance,	Nginx	has	a	rich	set	of	commands	running
in	it.	The	commands	include	echo,	echo_exec,	proxy_pass,	echo_location,	content_by_lua,	which	were	discussed	in	Nginx	Variables
(02),	Nginx	Variables	(03),	Nginx	Variables	(05)	and	Nginx	Variables	(07)	respectively.

content	is	a	phase	which	runs	later	than	rewrite	and	access.	Therefore	its	commands	always	execute	in	the	end	when	they	are
used	together	with	commands	of	rewrite	and	access.

location	/test	{

				#	rewrite	phase

				set	$age	1;

				rewrite_by_lua	"ngx.var.age	=	ngx.var.age	+	1";

				#	access	phase

				deny	10.32.168.49;

				access_by_lua	"ngx.var.age	=	ngx.var.age	*	3";

				#	content	phase

				echo	"age	=	$age";

}

This	is	a	perfect	example,	in	which	commands	are	executed	in	an	exact	sequence	as	they	are	written.	The	testing	result	matches	to	our
expectations	too.

$	curl	'http://localhost:8080/test'

age	=	6

In	fact,	the	commands'	writing	order	can	be	completely	shuffled	and	it	won't	have	any	impact	to	their	execution	sequence.	Command
set,	which	is	implemented	by	module	ngx_rewrite,	executes	in	rewrite	phase.	Command	rewrite_by_lua	from	module	ngx_lua
executes	in	the	end	of	rewrite	phase.	Command	deny	from	module	ngx_access	executes	in	access	phase.	Command
access_by_lua	from	module	ngx_lua	executes	in	the	end	of	access	phase.	Finally,	our	favorite	command	echo,	implemented	by
module	ngx_echo,	executes	in	content	phase.

The	example	also	demonstrates	the	collaborating	in	between	commands	running	on	each	different	Nginx	phase.	In	the	process,	Nginx
variable	is	the	data	carrier	interconnecting	commands	and	modules.	The	execution	order	of	these	commands	is	largely	decided	by	the
phase	each	applies	to.

As	matter	of	fact,	multiple	commands	from	different	modules	could	coexist	in	phase	rewrite	and	access.	As	the	example	shows,
command	set	and	command	rewrite_by_lua	both	belong	to	phase	rewrite.	Command	deny	and	command	access_by_lua	both
belong	to	phase	access.	However	it	is	not	the	same	story	for	phase	content.

Most	modules,	when	they	implement	commands	for	phase	content,	they	are	actually	inserting	"content	handler"	for	the	current
location	directive,	however	there	can	be	one	and	only	one	"content	handler"	for	a	location.	So	only	one	module	could	beat	the
rest	when	multiple	modules	are	contending	the	role.	Consider	following	problematic	example:

?	location	/test	{

?					echo	hello;

?					content_by_lua	'ngx.say("world")';

?	}

Command	echo	from	module	ngx_echo	and	command	content_by_lua	from	module	ngx_lua	both	execute	in	phase	content.	But
only	one	of	them	could	successfully	become	"content	handler":

$	curl	'http://localhost:8080/test'

world

Our	test	indicates,	that	the	winner	is	content_by_lua	although	it	is	written	afterwards,	and	command	echo	never	really	has	a	chance	to
run.	We	cannot	be	assured	which	module	wins	in	the	circumstance.	For	example,	module	ngx_echo	wins	and	the	output	becomes
hello	if	we	swap	the	content_by_lua	and	echo	statements.	So	we	shall	avoid	to	use	multiple	commands	for	phase	content,	if	the
commands	are	implemented	by	different	modules.

http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpEchoModule#echo_exec
http://wiki.nginx.org/HttpProxyModule#proxy_pass
http://wiki.nginx.org/HttpEchoModule#echo_location
http://wiki.nginx.org/HttpLuaModule#content_by_lua
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpRewriteModule
http://wiki.nginx.org/HttpLuaModule#rewrite_by_lua
http://wiki.nginx.org/HttpLuaModule
http://wiki.nginx.org/HttpAccessModule#deny
http://wiki.nginx.org/HttpAccessModule
http://wiki.nginx.org/HttpLuaModule#access_by_lua
http://wiki.nginx.org/HttpLuaModule
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpEchoModule
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpLuaModule#rewrite_by_lua
http://wiki.nginx.org/HttpAccessModule#deny
http://wiki.nginx.org/HttpLuaModule#access_by_lua
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpEchoModule
http://wiki.nginx.org/HttpLuaModule#content_by_lua
http://wiki.nginx.org/HttpLuaModule
http://wiki.nginx.org/HttpLuaModule#content_by_lua
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpEchoModule
http://wiki.nginx.org/HttpLuaModule#content_by_lua
http://wiki.nginx.org/HttpEchoModule#echo

The	example	can	be	modified	by	replacing	command	content_by_lua	with	command	echo	and	we	will	get	what	we	need:

location	/test	{

				echo	hello;

				echo	world;

}

Again	test	proves:

$	curl	'http://localhost:8080/test'

hello

world

We	can	use	multiple	echo	commands,	there	is	no	problem	with	this	because	they	all	belong	to	module	ngx_echo.	Module	ngx_echo
regulates	the	execution	ordering	of	them.	Be	careful	though,	not	every	module	supports	the	commands	being	executed	multiple	times
within	one	location.	Command	content_by_lua	for	an	instance,	can	be	used	only	once,	so	following	example	is	incorrect:

?	location	/test	{

?					content_by_lua	'ngx.say("hello")';

?					content_by_lua	'ngx.say("world")';

?	}

Nginx	dumps	error	for	the	configuration:

[emerg]	"content_by_lua"	directive	is	duplicate	...

The	correct	way	of	doing	it	is:

location	/test	{

				content_by_lua	'ngx.say("hello")	ngx.say("world")';

}

Instead	of	using	twice	the	content_by_lua	command	in	location,	the	approach	is	to	call	function	ngx.say	twice	in	the	Lua	code,
which	is	executed	by	command	content_by_lua

Similarly,	command	proxy_pass	from	module	ngx_proxy	cannot	coexist	with	command	echo	within	one	location	because	they
both	execute	in	content	phase.	Many	Nginx	newbies	make	following	mistake:

?	location	/test	{

?					echo	"before...";

?					proxy_pass	http://127.0.0.1:8080/foo;

?					echo	"after...";

?	}

?

?	location	/foo	{

?					echo	"contents	to	be	proxied";

?	}

The	example	tries	to	output	strings	"before..."	and	"after..."	with	command	echo	before	and	after	module	ngx_proxy
returns	its	content.	However	only	one	module	could	execute	in	content.	The	test	indicates	module	ngx_proxy	wins	and	command
echo	from	module	ngx_echo	never	runs

$	curl	'http://localhost:8080/test'

contents	to	be	proxied

To	implement	what	the	example	had	wanted	to,	we	shall	use	two	other	commands	provided	by	module	ngx_echo,	echo_before_body
and	echo_after_body:

location	/test	{

				echo_before_body	"before...";

				proxy_pass	http://127.0.0.1:8080/foo;

				echo_after_body	"after...";

}

location	/foo	{

				echo	"contents	to	be	proxied";

http://wiki.nginx.org/HttpLuaModule#content_by_lua
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpEchoModule
http://wiki.nginx.org/HttpEchoModule
http://wiki.nginx.org/HttpLuaModule#content_by_lua
http://wiki.nginx.org/HttpLuaModule#content_by_lua
http://wiki.nginx.org/HttpLuaModule#ngx.say
http://wiki.nginx.org/HttpLuaModule#content_by_lua
http://wiki.nginx.org/HttpProxyModule#proxy_pass
http://wiki.nginx.org/HttpProxyModule
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpProxyModule
http://wiki.nginx.org/HttpProxyModule
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpEchoModule
http://wiki.nginx.org/HttpEchoModule
http://wiki.nginx.org/HttpEchoModule#echo_before_body
http://wiki.nginx.org/HttpEchoModule#echo_after_body

}

Test	tells	we	make	it:

$	curl	'http://localhost:8080/test'

before...

contents	to	be	proxied

after...

The	reason	commands	echo_before_body	and	echo_after_body	could	coexist	with	other	modules	in	content	phase,	is	they	are	not
"content	handler"	but	"output	filter"	of	Nginx.	Back	in	(01)	when	we	examine	the	"debug	log"	generated	by	command	echo	,	we've
learnt	Nginx	calls	its	"output	filter"	whenever	Nginx	outputs	data.	So	that	module	ngx_echo	takes	the	advantage	of	it	to	modify	content
generated	by	module	ngx_proxy	(by	adding	surrounding	content).	We	shall	point	out	though,	"output	filter"	is	not	one	of	those	11
phases	mentioned	in	(01)	(many	phases	could	trigger	"output	filter"	when	they	output	data).	Still	it's	perfectly	all	right	to	document
commands	echo_before_body	and	echo_after_body	as	following:

phase:	output	filter

It	means	the	command	executes	in	"output	filter".

http://wiki.nginx.org/HttpEchoModule#echo_before_body
http://wiki.nginx.org/HttpEchoModule#echo_after_body
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpEchoModule
http://wiki.nginx.org/HttpProxyModule
http://wiki.nginx.org/HttpEchoModule#echo_before_body
http://wiki.nginx.org/HttpEchoModule#echo_after_body

Nginx	directive	execution	order	(06)	
We've	learnt	in	(05)	that	when	a	command	executes	in	content	phase	for	a	specific	location,	it	usually	means	its	Nginx	module
registers	a	"content	handler"	for	the	location.	However,	what	happens	if	no	module	registers	its	command	as	"content	handler"	for
phase	content	?	Who	will	be	taking	the	glory	of	generate	content	and	output	responses	?	The	answer	is	the	static	resource	module,
which	maps	the	request	URI	to	the	file	system.	Static	resource	module	only	comes	into	play	when	there	is	none	"content	handler",
otherwise	it	hands	off	the	duty	to	"content	handler".

Typically	Nginx	has	three	static	resource	modules	for	the	content	phase	(unless	one	or	more	of	those	modules	are	disabled
explicitly,	or	some	other	conflicting	modules	are	enabled	when	Nginx	is	built)	The	three	modules,	in	the	order	of	their	execution	order,
are	ngx_index	module,	ngx_autoindex	module	and	ngx_static	module.	Let's	discuss	them	one	by	one.

Module	ngx_index	and	ngx_autoindex	only	apply	to	those	request	URI,	which	ends	with	/.	For	the	other	request	URI	which	does	not
end	with	/,	both	modules	ignore	them	and	let	the	following	content	phase	module	handle.	Module	ngx_static	however,	has	an
exact	opposite	strategy.	It	ignores	the	request	URI	which	ends	with	/	and	handles	the	rest.

Module	ngx_index	mainly	looks	for	a	specific	home	page	file,	such	as	index.html	or	index.htm	in	the	file	system.	For	example:

location	/	{

				root	/var/www/;

				index	index.htm	index.html;

}

When	address	/	is	requested,	Nginx	looks	for	file	index.htm	and	index.html	(in	this	order)	in	a	path	in	the	file	system.	The	path
is	specified	by	command	root.	If	file	index.htm	exists,	Nginx	jumps	internally	to	location	index.htm;	if	it	does	not	exist	and	file
index.html	exists,	Nginx	jumps	internally	to	location	index.html.	If	file	index.html	does	not	exist	either,	and	handling	is
transferred	to	the	other	module	which	executes	it	commands	in	phase	content.

We	have	learnt	in	Nginx	Variables	(02),	commands	echo_exec	and	rewrite	can	trigger	"internal	redirects"	as	well.	The	jump	modifies
the	request	URI,	and	looks	for	the	corresponding	location	directive	for	subsequent	handling.	In	the	process,	phases	rewrite,
access	and	content	are	reiterated	for	the	location.	The	"internal	redirect"	is	different	from	the	"external	redirect"	defined	by
HTTP	response	code	302	and	301,	client	browser	won't	update	its	URI	addresses.	Therefore	as	soon	as	internal	jump	occurs	when
module	ngx_index	finds	the	files	specified	by	command	index,	the	net	effect	is	like	client	would	have	been	requesting	the	file's	URI	at
the	very	beginning.

We	can	check	following	example	to	witness	the	"internal	redirect"	triggered	by	module	ngx_index,	when	it	finds	the	needed	file.

location	/	{

				root	/var/www/;

				index	index.html;

}

location	/index.html	{

				set	$a	32;

				echo	"a	=	$a";

}

We	need	to	create	an	empty	file	index.html	under	the	path	/var/www/,	and	make	sure	the	file	is	readable	for	the	Nginx	worker
process.	Then	we	could	send	request	to	/:

$	curl	'http://localhost:8080/'

a	=	32

What	happened	?	Why	the	output	is	not	the	content	of	file	index.html	(which	shall	be	empty)	?	Firstly	Nginx	uses	directive
location	/	to	handle	original	GET	/	request,	then	module	ngx_index	executes	in	content	phase,	and	it	finds	file	index.html
under	path	/var/www/.	At	this	moment,	it	triggers	an	"internal	redirect"	to	location	/index.html.

So	far	so	good.	But	here	comes	the	surprises	!	When	Nginx	looks	for	location	directive	which	matches	to	/index.html,
location	/index.html	has	a	higher	priority	than	location	/.	This	is	because	Nginx	uses	"longest	matched	substring"
semantics	to	match	location	directives	to	request	URI's	prefix.	When	directive	is	chosen,	phases	rewrite,	access	and
content	are	reiterated,	and	eventually	it	outputs	a	=	32.

http://wiki.nginx.org/HttpIndexModule
http://wiki.nginx.org/HttpAutoindexModule
http://wiki.nginx.org/HttpIndexModule
http://wiki.nginx.org/HttpAutoindexModule
http://wiki.nginx.org/HttpIndexModule
http://wiki.nginx.org/HttpCoreModule#root
http://wiki.nginx.org/HttpEchoModule#echo_exec
http://wiki.nginx.org/HttpRewriteModule#rewrite
http://wiki.nginx.org/HttpIndexModule
http://wiki.nginx.org/HttpIndexModule#index
http://wiki.nginx.org/HttpIndexModule
http://wiki.nginx.org/HttpIndexModule

What	if	we	remove	file	/var/www/index.html	in	the	example,	and	request	to	/	again	?	The	answer	is	error	403	Forbidden.
Why?	When	module	ngx_index	cannot	find	the	file	specified	by	command	index	(index.html	in	here),	it	transfers	the	handling	to
the	following	module	which	executes	in	content.	But	none	of	those	following	modules	can	fulfill	the	request,	Nginx	bails	out	and
dumps	us	error.	Meanwhile	it	logs	the	error	in	Nginx	error	log:

[error]	28789#0:	*1	directory	index	of	"/var/www/"	is	forbidden

The	meaning	of	directory	index	is	to	generate	"indexes".	Usually	this	implies	to	generate	a	web	page,	which	lists	every	file	and
sub	directories	under	path	/var/www/.	If	we	use	module	ngx_autoindex	right	after	ngx_index,	it	can	generate	such	a	page	just	like
what	we	need.	Now	let's	modify	the	example	a	little	bit:

location	/	{

				root	/var/www/;

				index	index.html;

				autoindex	on;

}

When	/	is	requested	again	meanwhile	file	/var/www/index.html	is	kept	missing.	A	nice	html	page	is	generated:

$	curl	'http://localhost:8080/'

<html>

<head><title>Index	of	/</title></head>

<body	bgcolor="white">

<h1>Index	of	/</h1><hr><pre>../

cgi-bin/		08-Mar-2010	19:36			-

error/						08-Mar-2010	19:36			-

htdocs/				05-Apr-2010	03:55			-

icons/						08-Mar-2010	19:36			-

</pre><hr></body>

</html>

The	page	shows	there	are	a	few	subdirectories	under	my	/var/www/.	They	are	cgi-bin/,	error/,	htdocs/	and	icons/.	The
output	might	be	different	if	you	have	tried	by	yourself.

Again,	if	file	/var/www/index.hmtl	does	exist,	module	ngx_index	will	trigger	"internal	redirect",	and	module	ngx_autoindex
will	not	have	a	chance	to	execute,	you	may	test	it	yourself	too.

The	"goal	keeper"	module	executed	in	phase	content	is	ngx_static.	which	is	also	used	intensively.	The	module	serves	the	static
files,	including	the	static	resources	of	a	web	site,	such	as	static	.html	files,	static	.css	files,	static	.js	files	and	static	image	files
etc.	Although	ngx_index	could	trigger	an	"internal	redirect"	to	the	specified	home	page,	but	the	actual	output	task	(takes	the	file
content	as	response,	and	marks	the	corresponding	response	headers)	is	carried	out	by	module	ngx_static.

http://wiki.nginx.org/HttpIndexModule
http://wiki.nginx.org/HttpIndexModule#index
http://wiki.nginx.org/HttpAutoindexModule
http://wiki.nginx.org/HttpIndexModule
http://wiki.nginx.org/HttpIndexModule
http://wiki.nginx.org/HttpAutoindexModule

Nginx	directive	execution	order	(07)	
Let's	check	an	example	in	which	module	ngx_static	serves	disk	files,	with	following	configuration	snippet:

location	/	{

				root	/var/www/;

}

Meanwhile	two	files	are	created	under	/var/www/.	One	file	is	named	index.html	and	its	content	contains	one	line	of	text	this
is	my	home.	Another	file	is	named	hello.html	and	its	content	contains	one	line	of	text	hello	world.	Again	be	aware	of	the
files'	privileges	and	make	sure	they	are	readable	by	Nginx	worker	process.

Now	we	send	requests	to	the	files'	corresponding	URI:

$	curl	'http://localhost:8080/index.html'

this	is	my	home

$	curl	'http://localhost:8080/hello.html'

hello	world

As	we	can	see,	the	created	file	contents	are	sent	as	outputs.

We	can	examine	what	is	happening	here:	location	/	does	not	have	any	command	to	execute	in	phase	content,	therefore	no
module	has	registered	a	"content	handler"	in	the	location.	The	handling	thus	falls	to	the	three	static	resource	modules	which	are	the
last	resorts	of	phase	content.	The	former	two	modules	ngx_index	and	ngx_autoindex	notices	that	the	request	URI	does	not	end	with
/	so	they	hand	off	immediately	to	module	ngx_static,	which	runs	in	the	end.	According	to	the	"document	root"	specified	by
command	root,	module	ngx_static	maps	the	request	URIs	/index.html	and	/hello.html	to	disk	files
/var/www/index.html	and	/var/www/hello.html	respectively.	As	both	files	can	be	found,	their	content	are	outputted	as
response,	meanwhile	response	header	Content-Type,	Content-Length	and	Last-Modified	are	accordingly	indicated.

To	verify	module	ngx_static	has	executed,	we	could	enable	the	"debug	log"	introduced	in	(01).	Again	we	send	request	to
/index.html	and	Nginx	error	log	will	contain	following	debug	information:

[debug]	3033#0:	*1	http	static	fd:	8

This	line	is	generated	by	module	ngx_static.	Its	meaning	is	"	outputting	static	resource	whose	file	handle	is	8".	Of	course	the
numerical	file	handle	changes	every	time,	and	the	line	is	only	a	typical	output	in	my	setup.	To	be	reminded,	builtin	module
ngx_gzip_static	could	generate	the	same	debug	info	as	well,	by	default	it	is	not	enabled	though,	which	will	be	discussed	later.

Command	root	only	declares	a	"document	root",	it	does	not	enables	the	ngx_static	module.	The	module	is	as	matter	of	fact,
always	enabled	already,	but	it	might	not	have	the	chance	to	execute.	This	is	entirely	up	to	the	other	modules,	which	execute	earlier	in
content	phase.	Module	ngx_static	execute	only	when	all	of	them	have	"gave	up".	To	prove	this,	check	following	blank
location	definition:

location	/	{

}

Because	there	is	no	root	command,	Nginx	computes	a	default	"document	root"	when	the	location	is	requested.	The	default	shall	be	the
html/	subdirectory	under	"configure	prefix".	For	example	suppose	our	"configure	prefix"	is	/foo/bar/,	the	default	"document
root"	is	/foo/bar/html/.

So	who	decides	"configure	prefix"	?	Actually	it	the	Nginx	root	directory	when	it	is	installed	(or	the	value	of	--prefix	option	of
script	./configure	when	Nginx	is	built).	If	Nginx	is	installed	into	/usr/local/nginx/,	"configure	prefix"	is
/usr/local/nginx/	and	default	"document	root"	is	therefore	/usr/local/nginx/html/.	Certainly	a	command	line	option
--prefix	can	be	given	when	Nginx	is	started,	to	change	the	"configure	prefix"	(so	that	we	can	easily	test	multiple	setups).	Suppose
Nginx	is	started	as	following:

nginx	-p	/home/agentzh/test/

For	this	server,	its	"configure	prefix"	becomes	/home/agentzh/test/	and	its	"document	root"	becomes
/home/agentzh/test/html/.	The	"configure	prefix"	not	only	determines	"document	root",	it	actually	determines	the	way	many
relational	path	resolutes	to	absolute	path	in	Nginx	configuration.	We	will	encounter	many	examples	which	reference	"configure

http://wiki.nginx.org/HttpIndexModule
http://wiki.nginx.org/HttpAutoindexModule
http://wiki.nginx.org/HttpCoreModule#root
http://wiki.nginx.org/HttpGzipStaticModule
http://wiki.nginx.org/HttpCoreModule#root
http://wiki.nginx.org/HttpCoreModule#root

prefix".

In	fact	there	is	a	simple	way	of	telling	current	"document	root",	which	is	to	request	a	non-existed	file,	Such	as:

$	curl	'http://localhost:8080/blah-blah.txt'

<html>

<head><title>404	Not	Found</title></head>

<body	bgcolor="white">

<center><h1>404	Not	Found</h1></center>

<hr><center>nginx</center>

</body>

</html>

Naturally,	the	404	error	page	is	returned.	Again	when	we	check	Nginx	error	log,	we	shall	have	following	error	message:

[error]	9364#0:	*1	open()	"/home/agentzh/test/html/blah-

blah.txt"	failed	(2:	No	such	file	or	directory)

The	error	message	is	printed	by	module	ngx_static,	since	it	cannot	find	a	file	blah-blah.txt	in	its	corresponding	path.	And
because	the	error	message	contains	the	absolute	path,	which	ngx_static	attempts	to	open	with,	it's	quite	obvious	that	current
"document	root"	is	/home/agentzh/test/html/.

Many	newbies	might	take	it	for	granted	that	error	404	is	caused	when	the	needed	location	does	not	exist.	The	former	example	tells
us,	404	error	could	be	returned	even	if	the	needed	location	is	configured	and	matched.	This	is	because	error	404	means	the	non-
existence	of	an	abstract	"resource",	not	the	specific	location.

Another	frequent	mistake	is	missing	the	command	for	phase	content,	when	they	actually	don't	expect	the	default	static	modules	to
come	into	play,for	example:

location	/auth	{

				access_by_lua	'

								--	a	lot	of	Lua	code	omitted	here...

				';

}

Apparently,	only	commands	for	phase	access	are	given	for	/auth,	which	is	access_by_lua.	And	it	has	no	commands	for	phase
content.	So	when	/auth	is	requested,	the	Lua	code	specified	in	access	phase	will	execute,	then	the	static	resource	will	be	served
in	phase	content	by	module	ngx_static.	Since	it	actually	looks	for	the	file	/auth	on	the	disk	normally	it	dumps	a	404	error
unless	we	are	luckily	and	file	/auth	is	created	on	the	corresponding	path.	So	the	thumb	of	rule,	when	error	404	is	encountered	under
no	static	resource	circumstances,	we	shall	first	check	if	the	location	has	properly	configured	its	commands	for	phase	content,	the
commands	can	be	content_by_lua,	echo	and	proxy_pass	etc.	In	fact,	Nginx	error	log	error.log	could	only	give	very	confusing
message	for	the	case.	As	the	ones	below,	which	is	found	for	the	above	example:

[error]	9364#0:	*1	open()	"/home/agentzh/test/html/auth"	failed	(2:	No	such	file	or	directory)

http://wiki.nginx.org/HttpLuaModule#access_by_lua
http://wiki.nginx.org/HttpLuaModule#content_by_lua
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpProxyModule#proxy_pass

Nginx	directive	execution	order	(08)	
So	far	we	have	addressed	in	detail	rewrite,	access	and	content,	which	are	also	the	most	frequently	encountered	phases	in
Nginx	request	processing.	We	have	learnt	many	Nginx	modules	and	their	commands	that	execute	in	those	phases,	and	it's	clear	to	us
that	the	commands'	execution	order	is	directly	decided	by	the	phase	they	are	running	in.	Understanding	the	phase	is	our	keynote	for
correct	configuration	which	orchestrates	various	Nginx	modules.	Therefore	let's	cover	the	rest	phases	we've	not	met.

As	mentioned	in	(01),	altogether	there	can	be	11	phases	when	Nginx	handles	a	request.	In	their	execution	order	the	phases	are	post-
read,	server-rewrite,	find-config,	rewrite,	post-rewrite,	preaccess,	access,	post-access,	try-files,
content,	and	finally	log.

Phase	post-read	is	the	very	first,	commands	registered	in	this	phase	execute	right	after	Nginx	has	processed	the	request	headers.
Similar	to	phase	rewrite	we've	learnt	earlier,	post-read	supports	hooks	by	Nginx	modules.	Built-in	module	ngx_realip	is	an
example,	it	hooks	its	handler	in	post-read	phase,	and	forcefully	rewrite	the	request's	original	address	as	the	value	of	a	specific
request	header.	The	following	case	illustrates	ngx_realip	module	and	its	commands	set_real_ip_from,	real_ip_header.

server	{

				listen	8080;

				set_real_ip_from	127.0.0.1;

				real_ip_header			X-My-IP;

				location	/test	{

								set	$addr	$remote_addr;

								echo	"from:	$addr";

				}

}

The	configuration	tells	Nginx	to	forcefully	rewrite	the	original	address	of	every	request	coming	from	127.0.0.1	to	be	the	value	of
the	request	header	X-My-IP.	Meanwhile	it	uses	the	built-in	variable	$remote_addr	to	output	the	request's	original	address,	so	that	we
know	if	the	rewrite	is	successful.

First	we	send	a	request	to	/test	from	localhost:

$	curl	-H	'X-My-IP:	1.2.3.4'	localhost:8080/test

from:	1.2.3.4

The	test	utilizes	-H	option	provided	by	curl,	the	option	incorporates	an	extra	HTTP	header	X-My-IP:	1.2.3.4	in	the	request.	As
we	can	tell,	variable	$remote_addr	has	become	1.2.3.4	in	rewrite	phase,	the	value	comes	from	the	request	header	X-My-IP.	So
when	does	Nginx	rewrite	the	request's	original	address	?	yes	it's	in	the	post-read	phase.	Since	phase	rewrite	is	far	behind	phase
post-read,	when	command	set	reads	variable	$remote_addr,	its	value	has	already	been	rewritten	in	post-read	phase.

If	however,	the	request	sent	from	localhost	to	/test	does	not	have	a	X-My-IP	header	or	the	header	value	is	an	invalid	IP	address,
Nginx	will	not	modify	the	original	address.	For	example:

$	curl	localhost:8080/test

from:	127.0.0.1

$	curl	-H	'X-My-IP:	abc'	localhost:8080/test

from:	127.0.0.1

If	a	request	is	sent	from	another	machine	to	/test,	it	original	address	won't	be	overwritten	by	Nginx	either,	even	if	it	has	a	perfect	X-
My-IP	header.	It	is	because	our	previous	case	marks	explicitly	with	command	set_real_ip_from,	that	the	rewriting	only	occurs	for	the
requests	coming	from	127.0.0.1.	This	filtering	mechanism	protect	Nginx	from	malicious	requests	sent	by	untrusted	sources.	As
you	might	have	expected,	command	set_real_ip_from	can	designate	a	IP	subnet	(by	using	CIDR	notation	introduced	earlier	in	(03)).
Besides,	command	set_real_ip_from	can	be	used	multiple	times	so	that	we	can	setup	multiple	trusted	sources,	below	is	an	example:

set_real_ip_from	10.32.10.5;

set_real_ip_from	127.0.0.0/24;

You	might	be	asking,	what's	the	benefit	module	ngx_realip	brings	to	us?	Why	would	we	rewrite	a	request's	original	address	?	The
answer	is:	when	the	request	has	come	through	one	or	more	HTTP	proxies,	the	module	becomes	very	handy.	When	a	request	is

http://wiki.nginx.org/HttpRealIpModule
http://wiki.nginx.org/HttpRealIpModule
http://wiki.nginx.org/HttpRealIpModule#set_real_ip_from
http://wiki.nginx.org/HttpRealIpModule#real_ip_header
http://wiki.nginx.org/HttpCoreModule#.24remote_addr
http://wiki.nginx.org/HttpCoreModule#.24remote_addr
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpCoreModule#.24remote_addr
http://wiki.nginx.org/HttpRealIpModule#set_real_ip_from
http://wiki.nginx.org/HttpRealIpModule#set_real_ip_from
http://wiki.nginx.org/HttpRealIpModule#set_real_ip_from
http://wiki.nginx.org/HttpRealIpModule

forwarded	by	a	proxy,	its	original	address	will	become	the	proxy	server's	IP	address,	consequently	Nginx	and	the	services	running	on	it
will	no	longer	have	the	actual	source.	However,	we	could	let	proxy	server	record	the	original	address	in	a	specific	header	(such	as	X-
My-IP)	and	recover	it	in	Nginx,	so	that	its	subsequent	processing	(and	the	services	running	on	Nginx)	will	take	the	request	as	if	it
comes	right	from	its	original	address	and	the	proxies	in	between	are	transparent.	For	this	exact	purpose,	module	ngx_realip	needs	hook
handlers	in	the	first	phase,	the	post-read	phase,	so	the	rewriting	occurs	as	early	as	possible.

Behind	post-read	is	the	server-rewrite	phase.	We	briefly	mentioned	in	(02),	when	module	ngx_rewrite	and	its	commands
are	configured	in	server	directive,	they	basically	execute	in	server-rewrite	phase.	We	have	an	example	below:

server	{

				listen	8080;

				location	/test	{

								set	$b	"$a,	world";

								echo	$b;

				}

				set	$a	hello;

}

Attention	the	set	$a	hello	statement	is	put	in	server	directive,	so	it	runs	in	server-rewrite	phase,	which	runs	earlier	than
rewrite	phase.	Therefore	statement	set	$b	"$a,	world'"	in	location	directive	is	executed	afterwards	and	it	obtains	the
correct	$a	value:

$	curl	localhost:8080/test

hello,	world

Since	phase	server-rewrite	executes	later	than	post-read	phase,	command	set	in	server	directive	always	runs	later	than
module	ngx_realip,	which	rewrites	the	request's	original	address,	example:

server	{

				listen	8080;

				set	$addr	$remote_addr;

				set_real_ip_from	127.0.0.1;

				real_ip_header			X-Real-IP;

				location	/test	{

								echo	"from:	$addr";

				}

}

Send	request	to	/test	we	have:

$	curl	-H	'X-Real-IP:	1.2.3.4'	localhost:8080/test

from:	1.2.3.4

Again,	command	set	is	written	in	front	of	commands	of	ngx_realip,	its	actual	execution	is	only	afterwards.	So	when	command	set
assigns	variable	$addr	in	server-rewrite	phase,	the	variable	$remote_addr	has	been	overwritten.

http://wiki.nginx.org/HttpRealIpModule
http://wiki.nginx.org/HttpRewriteModule
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpRealIpModule
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpRealIpModule
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpCoreModule#.24remote_addr

Nginx	directive	execution	order	(09)	
Right	after	server-rewrite	is	the	phase	find-config.	This	phase	does	not	allow	Nginx	modules	to	register	their	handlers,
instead	it	is	a	phase	when	Nginx	core	matches	the	current	request	to	the	location	directives.	It	means	a	request	is	not	catered	by	any
location	directive	until	it	reaches	find-config.	Apparently,	for	phases	like	post-read	and	server-rewrite,	the
effective	commands	are	those	which	get	specified	only	in	server	directives	and	their	outer	directives,	because	the	two	phases	are
executed	earlier	than	find-config.	This	explains	that	commands	of	module	ngx_rewrite	are	executed	in	phase	server-
rewrite	only	if	they	are	written	within	sever	directive.	Similarly,	the	former	examples	configure	the	commands	of	module
ngx_realip	in	server	directive	to	make	sure	the	handlers	registered	in	post-read	phase	could	function	correctly.

As	soon	as	Nginx	matches	a	location	directive	in	the	find-config	phase,	it	prints	a	debug	log	in	the	error	log	file.	Let's	check
following	example:

location	/hello	{

				echo	"hello	world";

}

If	Nginx	enables	the	"debug	log",	a	debug	log	can	be	captured	in	file	error.log	whenever	interface	/hello	is	requested.

$	grep	'using	config'	logs/error.log

[debug]	84579#0:	*1	using	configuration	"/hello"

For	the	purpose	of	convenience,	the	log's	time	stamp	has	been	omitted.

After	phase	find-config,	it	is	our	old	buddy	rewrite.	Since	Nginx	already	matches	the	request	to	a	specific	location
directive,	starting	from	this	phase,	commands	written	within	location	directives	are	becoming	effective.	As	illustrated	earlier,
commands	of	module	ngx_rewrite	are	executed	in	rewrite	phase	when	they	are	written	in	location	directives.	Likewise,
commands	of	module	ngx_set_misc	and	module	ngx_lua	(set_by_lua	and	rewrite_by_lua)	are	also	executed	in	phase	rewrite.

After	rewrite,	it	is	the	post-rewrite	phase.	Just	like	find-config,	this	phase	does	not	allow	Nginx	modules	to	register	their
handlers	either,	instead	it	carries	out	the	needed	"internal	redirects"	by	Nginx	core	(if	this	has	been	requested	in	rewrite	phase).	We
have	addressed	the	"internal	jump"	concept	in	(02),	and	demonstrated	how	to	issue	the	"internal	redirect"	with	command	echo_exec	or
command	rewrite.	However,	let's	focus	on	command	rewrite	for	the	moment	since	command	echo_exec	is	executed	in	content
phase	and	becomes	irrelevant	to	post-rewrite,	the	former	draws	greater	interest	because	it	executes	in	rewrite	phase.	Back	to
our	example	in	(02):

server	{

				listen	8080;

				location	/foo	{

								set	$a	hello;

								rewrite	^	/bar;

				}

				location	/bar	{

								echo	"a	=	[$a]";

				}

}

The	command	rewrite	found	in	directive	location	/foo,	rewrites	the	URI	of	current	request	as	/bar	unconditionally,	meanwhile,
it	issues	an	"internal	redirect"	and	execution	continues	from	location	/bar.	What	ultimately	intrigues	us,	is	the	magical	bits	and
pieces	of	"internal	redirect"	mechanism,	"internal	redirect"	effectively	rewinds	our	processing	of	current	request	back	to	the	find-
config	phase,	so	that	the	location	directives	can	be	matched	again	to	the	request	URI,	which	usually	has	been	rewritten.	Just	like
our	example,	whose	URI	is	rewritten	as	/bar	by	command	rewrite,	the	location	/bar	directive	is	matched	and	execution	repeats
the	rewrite	phase	thereafter.

It	might	not	be	obvious,	that	the	actual	act	of	rewinding	to	find-config	does	not	occur	in	rewrite	phase,	instead	it	occurs	in	the
following	post-rewrite	phase.	Command	rewrite	in	the	former	example,	simply	requests	Nginx	to	issue	an	"internal	redirect"	in
its	post-rewrite	phase.	This	design	is	usually	questioned	by	Nginx	beginners	and	they	tend	to	come	up	with	an	idea	to	execute	the
"internal	jump"	directly	by	command	rewrite.	The	answer	however,	is	fairly	simple.	The	design	allows	URI	be	rewritten	multiple	times
in	the	location	directive,which	is	matched	at	the	very	beginning.	Such	as:

http://wiki.nginx.org/HttpRewriteModule
http://wiki.nginx.org/HttpRealIpModule
http://wiki.nginx.org/HttpRewriteModule
http://wiki.nginx.org/HttpSetMiscModule
http://wiki.nginx.org/HttpLuaModule
http://wiki.nginx.org/HttpLuaModule#set_by_lua
http://wiki.nginx.org/HttpLuaModule#rewrite_by_lua
http://wiki.nginx.org/HttpEchoModule#echo_exec
http://wiki.nginx.org/HttpRewriteModule#rewrite
http://wiki.nginx.org/HttpRewriteModule#rewrite
http://wiki.nginx.org/HttpEchoModule#echo_exec
http://wiki.nginx.org/HttpRewriteModule#rewrite
http://wiki.nginx.org/HttpRewriteModule#rewrite
http://wiki.nginx.org/HttpRewriteModule#rewrite
http://wiki.nginx.org/HttpRewriteModule#rewrite

location	/foo	{

				rewrite	^	/bar;

				rewrite	^	/baz;

				echo	foo;

}

location	/bar	{

				echo	bar;

}

location	/baz	{

				echo	baz;

}

The	request	URI	has	been	rewritten	twice	in	location	/foo	directive:	firstly	it	becomes	/bar,	secondly	it	becomes	/baz.	As	the
net	effect	of	both	rewrite	statements,	"internal	redirect"	occurs	only	once	in	post-rewrite	phase.	If	it	would	have	executed	the
"internal	redirect"	at	the	first	URI	rewrite,	the	second	would	have	no	chance	to	be	executed	since	processing	would	have	left	current
location	directive.	To	prove	this	we	send	a	request	to	/foo:

$	curl	localhost:8080/foo

baz

It	can	be	asserted	from	the	output,	the	actual	jump	is	from	/foo	to	/baz.	We	could	further	prove	this	by	enabling	Nginx	"debug	log"
and	interrogate	the	debug	log	generated	in	find-config	phase	for	the	matched:

$	grep	'using	config'	logs/error.log

[debug]	89449#0:	*1	using	configuration	"/foo"

[debug]	89449#0:	*1	using	configuration	"/baz"

Clearly,	for	the	specific	request,	Nginx	only	matches	two	location	directives:	/foo	and	/baz,	and	"internal	jump"	occurs	only
once.

Quite	obviously,	if	command	ngx_rewrite/rewrite	is	used	to	rewrite	the	request	URI	in	server	directive,	there	won't	be	any
"internal	redirects",	this	is	because	the	URI	rewrite	is	happening	in	server-rewrite	phase,	which	gets	executed	earlier	than
find-config	phase	that	matches	in	between	the	location	directives.	We	can	check	the	example	below:

server	{

				listen	8080;

				rewrite	^/foo	/bar;

				location	/foo	{

								echo	foo;

				}

				location	/bar	{

								echo	bar;

				}

}

In	the	example,	every	request	whose	URI	starts	with	/foo	gets	its	URI	rewritten	as	/bar.	The	rewriting	occurs	in	server-
rewrite	phase,	and	the	request	has	never	been	matched	to	any	location	directive.	Only	afterwards	Nginx	executes	the	matches	in
find-config	phase.	So	if	we	send	a	request	to	/foo,	location	/foo	never	gets	matched	because	when	the	match	occurs	in
find-config	phase,	the	request	URI	has	been	rewritten	as	/bar.	So	location	/bar	is	the	one	and	the	only	one	matched
directive.	Actual	output	illustrates	this:

$	curl	localhost:8080/foo

bar

Again	let's	check	Nginx	"debug	log":

$	grep	'using	config'	logs/error.log

[debug]	92693#0:	*1	using	configuration	"/bar"

http://wiki.nginx.org/HttpRewriteModule#rewrite

As	we	can	tell,	Nginx	altogether	finishes	once	the	location	match,	and	there	is	no	"internal	redirect".

Nginx	directive	execution	order	(10)	
After	post-rewrite,	it	is	the	preaccess	phase.	Just	as	its	name	implies,	the	phase	is	called	preaccess	simply	because	it	is
executed	right	before	access	phase.

Built-in	module	ngx_limit_req	and	ngx_limit_zone	are	executed	in	this	phase.	The	former	limits	the	number	of	requests	per
hour/minute,	and	the	latter	limits	the	number	of	simultaneous	requests.	We	will	be	discussing	them	more	thoroughly	afterwards.

Actually,	built-in	module	ngx_realip	registers	its	handler	in	preaccess	as	well.	You	might	need	to	ask	then:	"why	do	it	again?	Did	it
register	its	handlers	in	post-read	phase	already".	Before	the	answer	is	uncovered	let's	study	following	example:

server	{

				listen	8080;

				location	/test	{

								set_real_ip_from	127.0.0.1;

								real_ip_header	X-Real-IP;

								echo	"from:	$remote_addr";

				}

}

Comparing	to	the	earlier	example,	the	major	difference	is	that	commands	of	module	ngx_realip	are	written	in	a	specific	location
directive.	As	we	have	learnt	before,	Nginx	matches	its	location	directives	in	find-config	phase,	which	is	far	behind	post-
read,	hence	the	request	has	nothing	to	do	with	commands	written	in	any	location	directive	in	post-read	phase.	Back	to	our
example,	it	is	exactly	the	case	where	commands	are	written	in	a	location	directive	and	module	ngx_realip	won't	carry	out	any
rewrite	of	the	remote	address,	because	it	is	not	instructed	as	such	in	post-read	phase.

What	if	we	do	need	the	rewrite?	To	help	resolve	the	issue,	module	ngx_realip	registers	its	handlers	in	preaccess	again,	so	that	it	is
given	the	chance	to	execute	in	a	location	directive.	Now	the	example	runs	as	we	would've	expected:

$	curl	-H	'X-Real-IP:	1.2.3.4'	localhost:8080/test

from:	1.2.3.4

Be	really	careful	though,	module	ngx_realip	could	easily	be	misused,	as	our	following	example	illustrates:

server	{

				listen	8080;

				location	/test	{

								set_real_ip_from	127.0.0.1;

								real_ip_header	X-Real-IP;

								set	$addr	$remote_addr;

								echo	"from:	$addr";

				}

}

In	the	example,	we	introduces	a	variable	$addr,	to	which	the	value	of	$remote_addr	is	saved	in	rewrite	phase.	The	variable	is	then
used	in	the	output.	Slow	down	right	here	and	you	might	have	noticed	the	issue,	phase	rewrite	occurs	earlier	than	preaccess,	so
variable	assignment	actually	happens	before	module	ngx_realip	has	the	chance	to	rewrite	the	remote	address	in	preaccess	phase.
The	output	proves	our	observation:

$	curl	-H	'X-Real-IP:	1.2.3.4'	localhost:8080/test

from:	127.0.0.1

The	output	gives	the	actual	remote	address	(not	the	rewritten	one)	Again	Nginx	"debug	log"	helps	assert	it	too:

$	grep	-E	'http	script	(var|set)|realip'	logs/error.log

[debug]	32488#0:	*1	http	script	var:	"127.0.0.1"

[debug]	32488#0:	*1	http	script	set	$addr

[debug]	32488#0:	*1	realip:	"1.2.3.4"

http://wiki.nginx.org/HttpLimitReqModule
http://wiki.nginx.org/HttpLimitZoneModule
http://wiki.nginx.org/HttpRealIpModule
http://wiki.nginx.org/HttpRealIpModule
http://wiki.nginx.org/HttpRealIpModule
http://wiki.nginx.org/HttpRealIpModule
http://wiki.nginx.org/HttpRealIpModule
http://wiki.nginx.org/HttpCoreModule#.24remote_addr
http://wiki.nginx.org/HttpRealIpModule

[debug]	32488#0:	*1	realip:	0100007F	FFFFFFFF	0100007F

[debug]	32488#0:	*1	http	script	var:	"127.0.0.1"

Among	the	logs,	the	first	line	writes:

[debug]	32488#0:	*1	http	script	var:	"127.0.0.1"

The	log	is	generated	when	variable	$remote_addr	is	fetched	by	command	set,	string	"127.0.0.1"	is	the	fetched	value.

The	second	line	writes:

[debug]	32488#0:	*1	http	script	set	$addr

It	indicates	Nginx	assigns	value	to	variable	$addr.

For	the	following	two	lines:

[debug]	32488#0:	*1	realip:	"1.2.3.4"

[debug]	32488#0:	*1	realip:	0100007F	FFFFFFFF	0100007F

They	are	generated	when	module	ngx_realip	rewrites	the	remote	address	in	preaccess	phase.	As	we	can	tell,	the	new	address
becomes	1.2.3.4	as	expected	but	it	happens	only	after	the	variable	assignment	and	that's	already	too	late.

Now	the	last	line:

[debug]	32488#0:	*1	http	script	var:	"127.0.0.1"

It	is	generated	when	command	echo	outputs	variable	$addr,	clearly	the	value	is	the	original	remote	address,	not	the	rewritten	one.

Some	people	might	come	up	with	a	solution	immediately:"	what	if	module	ngx_realip	registers	its	handlers	in	rewrite	phase	instead,
not	in	preacccess	phase	?"	The	solution	however	is,	not	necessarily	correct.	This	is	because	module	ngx_rewrite	registers	its
handlers	in	rewrite	phase	too,	and	we	have	learnt	in	(02)	that	the	execution	order,	under	the	circumstances,	can	not	be	guaranteed,
so	there	is	a	good	chance	that	module	ngx_realip	still	executes	its	commands	after	command	set.

Always	we	have	the	backup	option:	instead	of	preaccess,	try	use	ngx_realip	module	in	server	directive,	it	bypasses	the
bothersome	situations	encountered	above.

After	phase	preaccess,	it	is	another	old	friend,	the	access	phase.	As	we've	learnt,	built-in	module	ngx_access,	3rd	party	module
ngx_auth_request	and	3rd	party	module	ngx_lua	(access_by_lua)	have	their	commands	executed	in	this	phase.

After	phase	access,	it	is	the	post-access	phase.	Again	as	the	name	implies,	we	can	easily	spot	that	the	phase	is	executed	right
after	access	phase.	Similar	to	post-rewrite,	the	phase	does	not	allow	Nginx	module	to	register	their	handlers,	instead	it	runs	a
few	tasks	by	Nginx	core,	among	them,	primarily	is	the	satisfy	functionality,	provided	by	module	ngx_http_core.

When	multiple	Nginx	module	execute	their	commands	in	access	phase,	command	satisfy	controls	their	relationships	in	between.	For
example,	both	module	A	and	module	B	register	their	access	control	handlers	in	access	phase,	we	may	have	two	working	modes,	one
is	to	let	access	when	both	A	and	B	pass	their	control,	the	other	is	to	let	access	when	either	A	or	B	pass	their	control.	The	first	one	is
called	all	mode	("AND"	relation),	the	second	one	is	called	any	mode	("OR"	relation)	By	default,	Nginx	uses	all	mode,	below	is	an
example:

location	/test	{

				satisfy	all;

				deny	all;

				access_by_lua	'ngx.exit(ngx.OK)';

				echo	something	important;

}

Under	/test	directive,	both	ngx_access	and	ngx_lua	are	used,	so	we	have	two	modules	monitoring	access	in	access	phase.
Specifically,	statement	deny	all	tells	module	ngx_access	to	rejects	all	access,	whereas	statement	access_by_lua
'ngx.exit(ngx.OK)'	allows	all	access.	When	all	mode	is	used	with	command	satisfy,	it	means	to	let	access	only	if	every
module	allows	access.	Since	module	ngx_access	always	rejects	in	our	case,	the	request	is	rejected:

$	curl	localhost:8080/test

http://wiki.nginx.org/HttpCoreModule#.24remote_addr
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpRealIpModule
http://wiki.nginx.org/HttpEchoModule#echo
http://wiki.nginx.org/HttpRealIpModule
http://wiki.nginx.org/HttpRewriteModule
http://wiki.nginx.org/HttpRealIpModule
http://wiki.nginx.org/HttpRewriteModule#set
http://wiki.nginx.org/HttpRealIpModule
http://wiki.nginx.org/HttpAccessModule
http://mdounin.ru/hg/ngx_http_auth_request_module/
http://wiki.nginx.org/HttpLuaModule
http://wiki.nginx.org/HttpLuaModule#access_by_lua
http://wiki.nginx.org/HttpCoreModule#satisfy
http://nginx.org/en/docs/http/ngx_http_core_module.html
http://wiki.nginx.org/HttpCoreModule#satisfy
http://wiki.nginx.org/HttpAccessModule
http://wiki.nginx.org/HttpLuaModule
http://wiki.nginx.org/HttpAccessModule
http://wiki.nginx.org/HttpCoreModule#satisfy
http://wiki.nginx.org/HttpAccessModule

<html>

<head><title>403	Forbidden</title></head>

<body	bgcolor="white">

<center><h1>403	Forbidden</h1></center>

<hr><center>nginx</center>

</body>

</html>

Careful	readers	might	find	following	error	log	in	the	Nginx	error	log	file:

[error]	6549#0:	*1	access	forbidden	by	rule

If	however,	we	change	the	satisfy	all	statement	to	satisfy	any.

location	/test	{

				satisfy	any;

				deny	all;

				access_by_lua	'ngx.exit(ngx.OK)';

				echo	something	important;

}

The	outcome	is	completely	different:

$	curl	localhost:8080/test

something	important

The	request	is	allowed	to	access.	Because	overall	access	is	allowed	whenever	one	module	passes	the	control	in	any	mode.	In	our
example,	module	ngx_lua	and	its	command	access_by_lua	always	allow	the	access.

Certainly,	if	every	module	rejects	the	access	in	the	satisfy	any	circumstances,	the	request	will	be	rejected:

location	/test	{

				satisfy	any;

				deny	all;

				access_by_lua	'ngx.exit(ngx.HTTP_FORBIDDEN)';

				echo	something	important;

}

Now	request	to	/test	will	encounter	403	Forbidden	error	page.	In	the	process,	the	"OR"	relation	of	access	control	of	each
access	module,	is	implemented	in	post-access.

Please	note	that	this	example	requires	at	least	ngx_lua	0.5.0rc19	or	later;	earlier	versions	cannot	work	with	the	satisfy	any
statement.

http://wiki.nginx.org/HttpLuaModule
http://wiki.nginx.org/HttpLuaModule#access_by_lua
http://wiki.nginx.org/HttpLuaModule

	Foreword
	Writing Plan for the Tutorials
	Nginx Variables (01)
	Nginx Variables (02)
	Nginx Variables (03)
	Nginx Variables (04)
	Nginx Variables (05)
	Nginx Variables (06)
	Nginx Variables (07)
	Nginx Variables (08)
	Nginx Directive Execution Order (01)
	Nginx Directive Execution Order (02)
	Nginx Directive Execution Order (03)
	Nginx Directive Execution Order (04)
	Nginx Directive Execution Order (05)
	Nginx Directive Execution Order (06)
	Nginx Directive Execution Order (07)
	Nginx Directive Execution Order (08)
	Nginx Directive Execution Order (09)
	Nginx Directive Execution Order (10)
	
	(02)
	(01)
	(07)
	(03)
	(05)

