
Domain-Specfic
Languages by OpenResty

Inc.
Implementation Strategies & Technologies

Yichun Zhang
Creator of OpenResty and Founder of OpenResty Inc.

Who am I?

u Yichun Zhang

u Creator of the open source OpenResty
project.

u CEO and cofounder of OpenResty Inc.

u Former founding team member of
Cloudflare.

u Former technical expert at Taobao,
Alibaba.

u Former Senior Engineer at Yahoo!.

u A very efficient interpreter and a very fast tracing-based JIT
compiler.

u Very small memory footprint.

u Extremely lightweight coroutines which can be used to do
transparent IO multiplexing and nonblocking IO.

u Great C interoperability via FFI and the standard VM C API.

u Explicit bytecode representation which helps separating the
compiling and the execution phases (like to different machines
and environments).

u Easy to hack (small code base and fast VM build time).

u Great portability to many different architectures and operating
systems.

u An efficient incremental mark-and-sweep garbage collector.

u Great for a common language runtime for different dynamic
languages.

Why Lua and
LuaJIT?

u Communicate intentions and knowledge more
efficiently with machines.

u Domain experts can use their own languages.

u Machines have more freedom in implementations and
optimizations.

u Better error handling & constraint enforcement.

Why DSLs

Real-World DSLs

u Regular Expressions

u BNF

u Maple & Mathematica’s user languages

u SQL

u XPath

u CSS (CSS selectors)

Internal DSLs

u Parsec for Haskell

u Lpeg for Lua

u Moose for Perl

Limitations of
Internal DSLs

u Error reporting is a challenges
(line numbers)

u Syntax must be compatible with
the host language

u Restricted by the host language
compiler & runtime

u Limited by the host language’s
user base

Challenges in Implementing DSLs

Parsers

Intermediate Representations (IRs), ASTs

Context-Sensitive Analysis (Semantic Analysis
& Optimizers)

Code Generation

Lua for DSLs

u Used as the source language

u Used in compilers

u Used as the target language

u ORJS is still in an early phase of development and
does not do any deep optimizations yet.

u For a non-recursive Fibonacci sample, ORJS is 30%
faster than V8.

u ORJS takes 70% less memory than V8 for a non-
recursive Fibonacci JavaScript example (d8 is used for
comparison).

u ORJS takes 80% less memory than NodeJS using the
same example.

u The ORJS runtime includes the full OpenResty’s nginx
binary with a lot of Nginx modules compiled in.

ORJS: A JavaScript
compiler targeting
LuaJIT/OpenResty

u Perl-compatible regular expressions (PCRE)

u Expression-level do … end blocks

u goto label

u table.new(narr, nrec)

u table.clone(tb)

u table.nkeys(tb)

u table.isarray(tb)

u table.isempty(tb)

Enhancements
to LuaJIT &
OpenResty

Why Powerful Regular Expressions

u Look-ahead
/ (?! (?: continue | break | for) \b) ([_A-Za-z]\w*) /
/ \|\| (?! =) /
/ \s* (?= \} | ;) /

u Recursion
/ -- (?: \[(=*) \[.*? \] \2 \] \s* | [^\n]* \n?) /

Composable Lua Code (for codegen)

u Fanlang (by OpenResty Inc.), a Perl 6 dialect

DSLs for
Implementing
DSLs

A simple arithemetic
calculator in Fanlang

u Grammar rules and Perl-compatible
regular expressions are part of the
language itself.

Top-down & Bottom-up Analysis in ASTs

Edgelang

u https://doc.openresty.com/en/edge/edgelang/

https://doc.openresty.com/en/edge/edgelang/

Opslang

https://doc.openresty.com/en/plus/opslang/

schemalang

Generate Lua API, SQL Queries,
and RESTful APIs with Data Validators

Dynamic Tracing Languages

u Ylang
https://blog.openresty.com/en/ylang-intro-part1/
https://doc.openresty.com/en/xray/ylang/

u Ylua
https://doc.openresty.com/en/xray/ylua/

u YSQL
https://doc.openresty.com/en/xray/ysql/

Questions?

